• 제목/요약/키워드: Panel Stiffness

검색결과 284건 처리시간 0.021초

Seismic behavior of steel frames with replaceable reinforced concrete wall panels

  • Wu, Hanheng;Zhou, Tianhua;Liao, Fangfang;Lv, Jing
    • Steel and Composite Structures
    • /
    • 제22권5호
    • /
    • pp.1055-1071
    • /
    • 2016
  • The paper presents an innovative steel moment frame with the replaceable reinforced concrete wall panel (SRW) structural system, in which the replaceable concrete wall can play a role to increase the overall lateral stiffness of the frame system. Two full scale specimens composed of the steel frames and the replaceable reinforced concrete wall panels were tested under the cyclic horizontal load. The failure mode, load-displacement response, deformability, and the energy dissipation capacity of SRW specimens were investigated. Test results show that the two-stage failure mode is characterized by the sequential failure process of the replaceable RC wall panel and the steel moment frame. It can be found that the replaceable RC wall panels damage at the lateral drift ratio greater than 0.5%. After the replacement of a new RC wall panel, the new specimen maintained the similar capacity of resisting lateral load as the previous one. The decrease of the bearing capacity was presented between the two stages because of the connection failure on the top of the replaceable RC wall panel. With the increase of the lateral drift, the percentage of the lateral force and the overturning moment resisted by the wall panel decreased for the reason of the reduction of its lateral stiffness. After the failure of the wall panel, the steel moment frame shared almost all the lateral force and the overturning moment.

단위 구조 변경에 의한 알루미늄 압출재의 차음성능 개선 (Improvement Method of the Sound Insulation Performance of Aluminium Extruded Panels by the Unit Structure Modification)

  • 이현우;김석현;김정태;송달호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집 특별세미나,특별/일반세션
    • /
    • pp.457-462
    • /
    • 2009
  • In a high speed train, aluminium extruded panel is widely used in floor, side wall and roof structures for high bending stiffness and weight reduction. However, with some inevitable reasons, aluminium extruded panel shows inferior sound insulation performance compared with the flat panel having same weight. Especially, occurrence of local resonance modes in the particular frequency band, is one of the main reason in the deterioration of the sound insulation performance. Local resonance modes are generated in the structure which consists of periodic unit structure, such as the aluminium extruded panel. The local resonance frequency is determined by the specification of the unit structure. In this study, we predict the local resonance frequency band on the aluminium extruded panel used for the high speed train, and investigate how the design modification in the unit structure influences the local resonance frequency band and panel bending stiffness. The purpose of the study is to provide the design information for the effective unit structure in order to improve the sound insulation performance of the aluminium extruded panel.

  • PDF

차량의 결합부 강성 모델링 기법 및 저진동 영역에 영향을 미치는 인자 연구 (A Study on Joint stiffness Modeling Method and Joint Design Factors for Low Frequency Vibration)

  • 성영석;강민석;임홍재
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.202-209
    • /
    • 2007
  • Vehicle body frame stiffness affects the dynamic and static characteristics. Vehicle frame structural performance is greatly affected by crossmember and joint design. While the structural characteristics of these joints vary widely, there is no known tool currently in use that quickly predicts joint stiffness early in design cycle. This paper presents the joint design factors affecting on low frequency vibration. The joint factors are joint panel thickness, section property, flange width and weld point space. To study the effect on vehicle low frequency vibration, case studies for these factors are performed. And Sensitivity analysis for section property is performed. The result can present design guide for high-stiffness vehicle.

  • PDF

저진동 차량을 위한 결합부 인자 연구 (A Study on Joint Design Factors for Low Vibration Vehicle)

  • 이재우;성영석;강민석;이상범;임홍재
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.177-184
    • /
    • 2008
  • Vehicle body frame stiffness affects the dynamic and static characteristics. Vehicle frame structure performance is greatly affected by crossmember and joint design. While the structural characteristic of these joint vary widely, there is no known tool currently in use that quickly predicts joint stiffness early in design cycle. This paper present the joint design factors affecting on low frequency vibration. The joint factors are joint panel thickness, flange width and weld point space. To study the effect on vehicle low frequency vibration, case studies for these factors are performed. The result can present design guide for high-stiffness vehicle.

  • PDF

H형 침목에 관한 연구 (A Study on the H-typed Railway Sleeper)

  • 배현웅;배상원;김해곤;이진옥;임남형
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.680-683
    • /
    • 2010
  • The lateral stiffness of the track structure is very important mechanical property to prevent the track buckling and progress of misalignment. The increasing methods of the lateral stiffness of the track structure are the following; increases of the lateral ballast resistance, and increases of the lateral stiffness of the track panel. In order to increase the lateral stiffness of the tack panel, some of the sleepers resist together against the lateral movement can be the most economical and mechanical method. In this paper, H-typed sleeper developed to solve this problem is introduced and the mechanical advantages of this sleeper are investigated.

  • PDF

P.C. 대형판 구조물의 수평접합부 유효강성에 대한 정량적 분석 (Quantitative Analysis on Effective Stiffness of Horizontal Joints in Precast Concrete Large Panel Structures)

  • 이한선;장극관;신영식
    • 콘크리트학회지
    • /
    • 제6권3호
    • /
    • pp.142-151
    • /
    • 1994
  • 프리캐스트 콘크리트 대형판 구조물에 있어서 접합부의 강성은 일반적으로 일체식 철근 콘클리트 벽식구조물에 비하여 떨어지는 것으로 알려져있으나 이들 강성에 대한 정량적인 값에 대한 정보가 매우 부족한 실정이다. 이 논문은 몇가지 실험으로부터 도출된 해석적 결과에 근거하여 특히 수평접합부의 압축강도에 관한 정량적 정보를 제공하는 것을 목적으로 한다. 또한 접촉문제로부터의 접근에 의해 구해진 수평접합부의 압축강성값이 위에서 얻은 값들과 매우 유사함을 보여주고 있다.

유한요소법을 이용한 보강판의 균열거동해석 (Analysis of Crack Growth in the Stiffened Panels by using Finite Element Method)

  • 이환우;전원석
    • 한국정밀공학회지
    • /
    • 제17권4호
    • /
    • pp.197-202
    • /
    • 2000
  • A simple numerical procedure is presented to determine the stress intensity factors for crack in a stiffened panel subjected to a uniaxial uniform stress normal to the crack. Two types of stiffened panels are analyzed by the finite element method for various values of crack lengths, stiffness ratios, and stiffener spacings. From the finite element solution, the stress intensity factors were determined by using hybrid extrapolation method. Results are presented in graphical forms for upper mentioned parameters.

  • PDF

접착이음 보강판의 피로거동해석 (Analysis of Fatigue Crack Growth Behavior in the Stiffened Panels with Bonded Symmetric Stiffener)

  • 이환우;강선규
    • 한국정밀공학회지
    • /
    • 제17권5호
    • /
    • pp.168-172
    • /
    • 2000
  • The stiffened panel is representative of a large portion of aircraft construction and therefore has much practical importance. In this paper, the influence of various shape parameters on the stress intensity factors and the fatigue crack growth in the panels with bonded composite stiffeners are studied experimentally. Results are presented as crack growth rates for various values of crack lengths, stiffness ratios, and stiffening Materials.

  • PDF

고성능 섬유쉬트를 부착시킨 경량 프리캐스트 복합패널로 보강된 RC보의 휨거동 (Flexural Behaviors of RC Beams Strengthened by Light Concrete Precast Composite Panel with an Advanced Fiber Sheet)

  • 안상호;윤정배
    • 콘크리트학회논문집
    • /
    • 제14권4호
    • /
    • pp.483-491
    • /
    • 2002
  • 본 연구는 경량 콘크리트 프리캐스트 패널에 고성능 섬유쉬트를 접착시킨 복합패널로 철근 콘크리트 보 하부에 휨 보강하여 보강보의 구조적 성능을 분석하였다. 보강보의 구조적 고찰은 항복하중, 최대하중, 각 하중에서 처짐 그리고 휨강성과 연성을 비교 분석하였다. 그 결과 39개 보를 실험하여 복합패널로 보강한 경우에 휨강도가 균일되게 향상됨을 보였다. 또한 실험결과 복합패널로 보강한 철근 콘크리트 보는 구조적으로 우수한 특성을 보였고, 섬유쉬트 부착공법으로 보강된 보와 비교할 경우에도 보강보의 강도가 더 개선되는 것으로 나타났다.

수직방향 직조 금속망을 이용한 초경량 금속 내부구조 접합판재의 제작 및 특성에 관한 기초 연구 (Basic Study in Fabrication and Mechanical Characteristics of Ultra Light Inner Structured and Bonded(ISB) Panel Containing Perpendicularly Woven Metal)

  • 정창균;윤석준;양동열;이상민;나석주;이상훈;안동규
    • 한국정밀공학회지
    • /
    • 제22권5호
    • /
    • pp.152-158
    • /
    • 2005
  • Inner structured and bonded panel, or ISB Panel, as a kind of sandwich type panel, has metallic inner structures which have low relative density, due to their dimensional shape of metal between a pair of metal skin sheets or face sheets. Previous works showed that ISB panels containing inner structures formed as repeated pyramidal shapes saved weight up to $60\%$ in condition of same stiffness comparing with solid sheet. In this work, woven metal is adapted to inner structures replacing pyramidal structures. The test specimens of ISB panel containing woven metal made by multi-point electric resistance welding and 3-point bending test have been carried out. The results of experiments and comparisons of process parameters, stiffness and failure mode are discussed.