• Title/Summary/Keyword: Panel Sensor

Search Result 192, Processing Time 0.029 seconds

LCD Embedded Hybrid Touch Screen Panel Based on a-Si:H TFT

  • You, Bong-Hyun;Lee, Byoung-Jun;Lee, Jae-Hoon;Koh, Jai-Hyun;Takahashi, Seiki;Shin, Sung-Tae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.964-967
    • /
    • 2009
  • A new hybrid-type touch screen panel (TSP) has been developed based on a-Si:H TFT which can detect the change of both $C_{LC}$ and photo-current. This TSP can detect the difference of $C_{LC}$ between touch and no-touch states in unfavorable conditions such as dark ambient light and shadows. The hybrid TSP sensor consists of a detection area which includes one TFT for photo sensing and two TFTs for amplification. Compared to a single internal capacitive TSP or an optical sensing TSP, this new proposed hybrid-type TSP enables larger sensing margin due to embedding of both optical and capacitive sensors.

  • PDF

Impact location on a stiffened composite panel using improved linear array

  • Zhong, Yongteng;Xiang, Jiawei
    • Smart Structures and Systems
    • /
    • v.24 no.2
    • /
    • pp.173-182
    • /
    • 2019
  • Due to the degradation of beamforming properties at angles close to $0^{\circ}$ to $180^{\circ}$, linear array does not have a complete $180^{\circ}$ inspection range but a smaller one. This paper develops a improved sensor array with two additional sensors above and below the linear sensor array, and presents time difference and two dimensional multiple signal classification (2D-MUSIC) based impact localization for omni-directional localization on composite structures. Firstly, the arrival times of impact signal observed by two additional sensors are determined using the wavelet transform and compared, and the direction range of impact source can be decided in general, $0^{\circ}$ to $180^{\circ}$ or $180^{\circ}$ to $360^{\circ}$. And then, 2D-MUSIC based spatial spectrum formula using uniform linear array is applied for locate accurate position of impact source. When the arrival time of impact signal observed by two additional sensors is equal, the direction of impact source can be located at $0^{\circ}$ or $180^{\circ}$ by comparing the first and last sensor of linear array. And then the distance is estimated by time difference algorithm. To verify the proposed approach, it is applied to a quasi-isotropic epoxy laminate plate and a stiffened composite panel. The results are in good agreement with the actual impact occurring position.

Sensor Applications of Thin-Film Transistors - Photosensor, Magnetic Sensor, Temperature Sensor and Chemical Sensor -

  • Kimura, Mutsumi;Miura, Yuta;Ogura, Takeshi;Hachida, Tomohisa;Nishizaki, Yoshitaka;Yamashita, Takehiko;Shima, Takehiro;Hashimoto, Hayami;Yamaguchi, Yohei;Hirako, Masaaki;Yamaoka, Toshifumi;Tani, Satoshi;Imuro, Yoshiki;Bundo, Kosuke;Sagawa, Yuki;Setsu, Koushi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.957-960
    • /
    • 2009
  • Sensor applications of thin-film transistors (TFTs), such as photosensor, magnetic sensor, temperature sensor and chemical sensor, are introduced. Active-matrix circuits and amplifying circuits using poly-Si TFTs are integrated with these sensors to improve sensor performances and generate additional functions. These sensors may be promising applications after flat-panel displays (FPDs) in giant-micro electronics.

  • PDF

Implementation of a Mobile Robot Using Landmarks

  • Kim, Sang-Ju;Lee, Jang-Myung
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.252-255
    • /
    • 2003
  • In this paper, we suggest the method for a service robot to move safely from an initial position to n goal position in the wide environment like a building. There is a problem using odometry encoder sensor to estimate the position of n mobile robot in the wide environment like a building. Because of the phenomenon of wheel's slipping, a encoder sensor has the accumulated error of n sensor measurement as time. Therefore the error must be compensated with using other sensor. A vision sensor is used to compensate the position of a mobile robot as using the regularly attached light's panel on a building's ceiling. The method to create global path planning for a mobile robot model a building's map as a graph data type. Consequently, we can apply floyd's shortest path algorithm to find the path planning. The effectiveness of the method is verified through simulations and experiments.

  • PDF

Thermal Design and Analysis for Space Imaging Sensor on LEO (지구 저궤도에서 운용되는 영상센서를 위한 열설계 및 열해석)

  • Shin, So-Min;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.5
    • /
    • pp.474-480
    • /
    • 2011
  • Space Imaging Sensor operated on LEO is affected from the Earth IR and Albedo as well as the Sun Radiation. The Imaging Sensor exposed to extreme environment needs thermal control subsystem to be maintained in operating/non-operating allowable temperature. Generally, units are periodically dissipated on spacecraft panel, which is designed as radiator. Because thermal design of the imaging sensor inside a spacecraft is isolated, heat pipes connected to radiators on the panel efficiently transfer dissipation of the units. First of all, preliminary thermal design of radiating area and heater power is performed through steady energy balance equation. Based on preliminary thermal design, on-orbit thermal analysis is calculated by SINDA, so calculation for thermal design could be easy and rapid. Radiators are designed to rib-type in order to maintain radiating performance and reduce mass. After on-orbit thermal analysis, thermal requirements for Space Imaging Sensor are verified.

Mixed-Mode Simulations of Touch Screen Panel Driver with Capacitive Sensor based on Improved Charge Pump Circuit (개선된 charge pump 기반 정전 센싱 회로를 이용한 터치 스크린 패널 드라이버의 혼성모드 회로 분석)

  • Yeo, Hyeop-Goo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.2
    • /
    • pp.319-324
    • /
    • 2012
  • This paper introduces a 2-dimensional touch screen panel driver based on an improved capacitive sensing circuit. The improved capacitive sensing circuit based on charge pump can eliminate the remaining charges of the intermediate nodes, which may cause output voltage drift. The touch screen panel driver with mixed-mode circuits was built and simulated using Cadence Spectre. Verilog-A models the digital circuits effectively and enables them to interface with analog circuits easily. From the simulation results, we can verify the reliable operations of the simple structured touch screen panel driver based on the improved capacitive sensing circuit offering no voltage drift.

Model Validation for the CBS Ku-Band Transponder Panel Using Launch Environmental Test (발사환경시험을 이용한 통신방송위성 Ku대역 중계기 패널의 모델 검증)

  • Seo Hyun Suk;Choi Jang Sub;Park Jong Heung;Woo Hyung Je
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.3 s.234
    • /
    • pp.387-394
    • /
    • 2005
  • Accurate predictions and simulations of the behavior of space structures based on analytical models become more important. In order to perform analysis to support the design of Ku-band transponder panel for the Communications and Broadcasting Satellite(CBS), mathematical models of the panel were generated in the form of finite element models. Test verification of these models is required before the transponder panel can be certified for launch environments. A modal identification was performed to obtain modal parameters which can be compared with the test results using correlation techniques. This paper approaches the sensor placement from the standpoint of the structural dynamicist who uses the modal parameter obtained during launch environmental test. The models were validated by performing a test-analysis correlation and updating analysis. It was proved that the Ku-band transponder panel satisfies the environmental test requirements.

Dynamic Analysis of the PDLC-based Electro-Optic Modulator for Fault Identification of TFT-LCD (박막 트랜지스터 기판 검사를 위한 PDLC 응용 전기-광학 변환기의 동특성 분석)

  • 정광석;정대화;방규용
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.92-102
    • /
    • 2003
  • To detect electrical faults of a TFT (Thin Film Transistor) panel for the LCD (Liquid Crystal Display), techniques of converting electric field to an image are used One of them is the PDLC (polymer-dispersed liquid crystal) modulator which changes light transmittance under electric field. The advantage of PDLC modulator in the electric field detection is that it can be used without physically contacting the TFT panel surface. Specific pattern signals are applied to the data and gate electrodes of the panel to charge the pixel electrodes and the image sensor detects the change of transmittance of PDLC positioned in proximity distance above the pixel electrodes. The image represents the status of electric field reflected on the PDLC so that the characteristic of the PDLC itself plays an important role to accurately quantify the defects of TFT panel. In this paper, the image of the PDLC modulator caused by the change of electric field of the pixel electrodes on the TFT panel is acquired and how the characteristics of PDLC reflect the change of electric field to the image is analyzed. When the holding time of PDLC is short, better contrast of electric field image can be obtained by changing the instance of applying the driving voltage to the PDLC.

Global environment change monitoring using the next generation satellite sensor, SGLI/GCOM-C

  • HONDA Yoshiaki
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.11-13
    • /
    • 2005
  • The Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) concluded that many collective observations gave a aspect of a global warming and other changes in the climate system. Future earth observation using satellite data should monitor global climate change, and should contribute to social benefits. Especially, human activities has given the big impacts to earth environment This is a very complex affair, and nature itself also impacts the clouds, namely the seasonal variations. JAXA (former NASDA) has the plan of the Global Change Observation Mission (GCOM) for monitoring of global environmental change. SGLI (Second Generation GLI) onboard GCOM-C (Climate) satellite, which is one of this mission, is an optical sensor from Near-UV to TIR. This sensor is the GLI follow-on sensor, which has the various new characteristics. Polarized/multi-directional channels and 250m resolution channels are the unique characteristics on this sensor. This sensor can be contributed to clarification of coastal change in sea surface. This paper shows the introduction of the unique aspects and characteristics of the next generation satellite sensor, SGLIIGCOM-C, and shows the preliminary research for this sensor.

  • PDF

Recommendations on dynamic pressure sensor placement for transonic wind tunnel tests

  • Yang, Michael Y.;Palodichuk, Michael T.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.6
    • /
    • pp.497-513
    • /
    • 2019
  • A wind tunnel test was conducted that measured surface fluctuating pressures aft of a ramp at transonic speeds. Dynamic pressure test data was used to perform a study to determine best locations for streamwise sensor pairs for shocked and unshocked runs based on minimizing the error in root-mean-square acceleration response of the panel. For unshocked conditions, the upstream sensor is best placed at least 6.5 ramp heights downstream of the ramp, and the downstream sensor should be within 2 ramp heights from the upstream sensor. For shocked conditions, the upstream sensor should be between 1 and 7 ramp heights downstream of the shock, with the downstream sensor 2 to 3 ramp heights of the upstream sensor. The shock was found to prevent the passage coherent flow structures; therefore, it may be desired to use the shock to define the boundary of subzones for the purpose of loads definition. These recommendations should be generally applicable to a range of expansion corner geometries in transonic flow provided similar flow structures exist. The recommendations for shocked runs is more limited, relying on data from a single dataset with the shock located near the forward end of the region of interest.