• Title/Summary/Keyword: Pancake winding

Search Result 63, Processing Time 0.026 seconds

Fabrication and Test of Multiple HTS Wire with Transposition for HTS Power Transformer

  • Kim, Woo-Seok;Park, Chan;Choi, Kyeong-Dal
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.2
    • /
    • pp.34-37
    • /
    • 2008
  • According to the recent design of an HTS (High Temperature Superconducting) power transformer whose capacity is hundreds MVA, the rated current values of the low voltage side are generally over thousands amps. Considering the performance of the recent HTS wires, it is inevitable to use several HTS wires in parallel for large rated current. Lots of stacked HTS wires were fabricated and tested so far, and the results have showed that we have to transpose each wire in order to reduce the AC losses as well as to increase the current capacity. But many development programs about HTS transformers reveal that the transposition of the several wires during the winding process is quite difficult not only in case of the layer windings but also in case of the pancake type ones. So, we need transposed multiple HTS wire which we can handle like single wire or cable for the HTS windings of large capacity power transformer. We fabricated several kinds of samples of multiple HTS wire with transposition to apply it to the HTS windings of power transformer. The electrical characteristics such as critical currents or AC losses are analyzed by experiments in case by case. Finally we present the best design of a multiple HTS wire for power transformer.

A study on the current limiting characteristics and magnetic analysis of the non-inductively wound coil (타입에 따른 무유도 권선형 코일의 한류 특성연구 및 자장해석)

  • Jang, Jae-Young;Park, Dong-Keun;Chang, Ki-Sung;Na, Jin-Bae;Kim, Won-Cheol;Chung, Yood-Do;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.1
    • /
    • pp.25-29
    • /
    • 2009
  • To reduce the power loss in normal state, non-inductively wound high temperature superconducting (HTS) coils are used for fault current limiter (FCL) application. Non-inductively wound coils can be classified into two types: solenoid type and pancake type. These two types have different electrical and thermal and mechanical characteristics due to their winding structure difference. This paper deals with the current limiting characteristics, magnetic field analysis of the two coils. Simulation using finite element method (FEM) was used to analyze the magnetic field distribution and inductance of the coils. Short circuit test using stabilizer-free coated conductor (CC) was also carried out. We can compare the characteristics of the two types of coil by using the data obtained from simulation and short circuit test. We confirmed the feasibility of FCL application by the analysis about the characteristics of non-inductively wound coil using CC.

Improvement of Degradation Characteristics in a Large, Racetrack-shaped 2G HTS Coil for MW-class Rotating Machines

  • Park, Heui Joo;Kim, Yeong-chun;Moon, Heejong;Park, Minwon;Yu, Inkeun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1166-1172
    • /
    • 2018
  • Degradation due to delamination occurs frequently in the high temperature superconductors (HTS) coil of rotating machines made with 2nd generation (2G) HTS wire, and the authors have observed other similar cases. Since an HTS field coil for a rotating machine is required to have stable current control and maintain a steady state, co-winding techniques for insulation material and epoxy resin for shape retention and heat transfer improvement are applied during coil fabrication. However, the most important limiting factor of this technique is delamination, which is known to be caused by the difference in thermal expansion between the epoxy resin and 2G HTS wire. Therefore, in this study, the experimental results of mixing the ratio of epoxy resin and alumina ($Al_2O3$) filler were applied to the fabrication of small and large test coils to solve the problem of degradation. For the verification of this scheme, eight prototypes of single pancake coils with different shapes were fabricated. They showed good results. The energization and operation maintenance tests of the stacked coils were carried out under liquid neon conditions similar to the operation temperature of an MW-class rotating machine. In conclusion, it was confirmed that the alumina powder mixed with epoxy resin in an appropriate ratio is an effective solution of de-lamination problem of 2G HTS coil.