• Title/Summary/Keyword: Panavia F 2.0

Search Result 52, Processing Time 0.019 seconds

In Vitro Evaluation of Shear Bond Strengths of Zirconia Cerami with Various Types of Cement after Thermocycling on Bovine Dentin Surface (지르코니아 표면 처리와 시멘트 종류에 따른 치면과의 전단 결합 강도 비교 연구)

  • Cho, Soo-Hyun;Cho, In-Ho;Lee, Jong-Hyuk;Nam, Ki-Young;Kim, Jong-Bae;Hwang, Sang-Hee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.23 no.3
    • /
    • pp.249-257
    • /
    • 2007
  • State of problem : The use of zirconium oxide all-ceramic material provides several advantages, including a high flexural strength(>1000MPa) and desirable optical properties, such as shading adaptation to the basic shades and a reduction in the layer thickness. Along with the strength of the materials, the cementation technique is also important to the clinical success of a restoration. Nevertheless, little information is available on the effect of different surface treatments on the bonding of zirconium high-crystalline ceramics and resin luting agents. Purpose : The aim of this study was to test the effects of surface treatments of zirconium on shear bond strengths between bovine teeth and a zirconia ceramic and evaluate differences among cements Material and methods : 54 sound bovine teeth extracted within a 1 months, were used. They were frozen in distilled water. These were rinsed by tap water to confirm that no granulation tissues have left. These were kept refrigerated at $4^{\circ}C$ until tested. Each tooth was placed horizontally at a plastic cylinder (diameter 20mm), and embedded in epoxy resin. Teeth were sectioned with diamond burs to expose dentin and grinded with #600 silicon carbide paper. To make sure there was no enamel left, each was observed under an optical microscope. 54 prefabricated zirconium oxide ceramic copings(Lava, 3M ESPE, USA) were assigned into 3 groups ; control, airborne-abraded with $110{\mu}m$ $Al_2O_3$ and scratched with diamond burs at 4 directions. They were cemented with a seating force of 10 ㎏ per tooth, using resin luting cement(Panavia $F^{(R)}$), resin cement(Superbond $C&B^{(R)}$), and resin modified GI cement(Rely X $Luting^{(R)}$). Those were thermocycled at $5^{\circ}C$ and $55^{\circ}C$ for 5000 cycles with a 30 second dwell time, and then shear bond strength was determined in a universal test machine(Model 4200, Instron Co., Canton, USA). The crosshead speed was 1 mm/min. The result was analyzed with one-way analysis of variance(ANOVA) and the Tukey test at a significance level of P<0.05. Results : Superbond $C&B^{(R)}$ at scratching with diamond burs showed the highest shear bond strength than others (p<.05). For Panavia $F^{(R)}$, groups of scratching and sandblasting showed significantly higher shear bond strength than control group(p<.05). For Rely X $Luting^{(R)}$, only between scratching & control group, significantly different shear bond strength was observed(p<.05). Conclusion : Within the limitation of this study, Superbond $C&B^{(R)}$ showed clinically acceptable shear bond between bovine teeth & zirconia ceramics regardless of surface treatments. For the surface treatment, scratching increased shear bond strength. Increase of shear bond strength by sandblasting with $110{\mu}m$ $Al_2O_3$ was not statistically different.

The compressive fracture strength of ceromer crown by the difference of occlusal thickness (Ceromer crown의 교합면 두께에 따른 압축 파절 강도의 비교)

  • Kim, Jee-Yeon;Park, Ha-Ok;Yang, Hong-So
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.18 no.3
    • /
    • pp.205-215
    • /
    • 2002
  • This study investigated the compressive fracture strength of Targis ceromer crown by the difference of occlusal thickness on a maxillary first premolar. Control group was a castable IPS-Empress all-ceramic crown with occlusal thickness of 1.5 mm constructed by layered technique. Experimental groups were Targis crowns having different occlusal thicknesses of 1.0 mm, 1.5 mm, 2.0 mm, 2.5 mm, respectively. The classification of Targis group is T10, T15, T20, T25 and T15N (for no-thermocycling and occlusal thickness of 1.5mm). Ten samples were tested per each group. Except occlusal thickness, all dimension of metal die is same with axial inclination of $10^{\circ}$and marginal width 0.8mm chamfer. All crowns were cemented with Panavia F and thermocycled 1,000 times between $5^{\circ}$ and $55^{\circ}$ water bath with 10 sec dwelling time and 10 sec resting time. The compressive fracture strength was measured by universal testing machine. The results were as follows : 1. Fracture strength was increased as the occlusal thickness increased : compressive fracture strength of Group T10, T15, T20, T25 was $66.65{\pm}4.88kgf$, $75.04{\pm}3.01kgf$, $87.07{\pm}7.06kgf$ and $105.03{\pm}10.56kgf$, respectively. 2. When comparing material, Targis crown had higher fracture strength than IPS-Empress crown : the mean compressive strength of group T15 was $75.04{\pm}3.01kgf$ and the value of group Control was $37.66{\pm}4.28kgf$. 3. Fracture strength was decreased by thermocycling : the compressive fracture strength of T15 was $75.04{\pm}3.01kgf$, which is lower than $90.69{\pm}6.88kgf$ of group T15N. 4. The fracture line of crowns began at the loading point and extended along long axis of tooth. IPS-Empress showed adhesive failure pattern whereas Targis had adhesive and cohesive failure. In the SEM view, stress was distributed radially from loading point and the crack line was more prominent on Targis crown.