Background: A presentation attack places the printed image or displayed video at the front of the sensor to deceive the biometric recognition system. Usually, presentation attackers steal a genuine user's biometric image and use it for presentation attack. In recent years, reconstruction attack and adversarial attack can generate high-quality fake images, and have high attack success rates. However, their attack rates degrade remarkably after image shooting. Methods: In order to comprehensively analyze the threat of presentation attack to palmprint recognition system, this paper makes six palmprint presentation attack datasets. The datasets were tested on texture coding-based recognition methods and deep learning-based recognition methods. Results and conclusion: The experimental results show that the presentation attack caused by the leakage of the original image has a high success rate and a great threat; while the success rates of reconstruction attack and adversarial attack decrease significantly.
This paper proposes a new approach to palmprint verification based on the gradient, in which a palm image is considered to be a three-dimensional terrain. Principal lines and wrinkles make deep and shallow valleys on a palm landscape. Then the steepest slope direction in each local area is first computed using the Kirsch operator, after which an orientation map is created that represents the dominant slope direction of each pixel. In this study, three orientation maps were made with different scales to represent local and global gradient information. Next, feature matching based on pixel-unit comparison was performed. The experimental results showed that the proposed method is superior to several state-of-the-art methods. In addition, the verification could be greatly improved by fusing orientation maps with different scales.
This paper is to propose the palm print recognition system using wavelet transform. The palm print is frequently used as the material for the biometric recognition system such as the finger print, iris, face, etc. Since the palm print has lots of properties which include principle line, wrinkles, ridge and so forth, the ways of the implementation of the system are various. In this paper, at first, the palm print image is acquired and then some level of wavelet transform is performed. The coefficients become to be some blocks size of M by N after divided into the horizontal, vertical, diagonal components each level. The mean values, which are calculated with values of each block, are used as the feature vector. To compare between the stored template and the acquired vectors, we adopt the PNN (Probability Neural Network) method.
KSII Transactions on Internet and Information Systems (TIIS)
/
제11권1호
/
pp.272-287
/
2017
This paper proposes new methods, named Derivative Code (DerivativeCode) and Derivative Code Pattern (DCP), for object recognition. The discriminative derivative code is used to capture the local relationship in the input image by concatenating binary results of the mathematical derivative value. Gabor based DerivativeCode is directly used to solve the palmprint recognition problem, which achieves a much better performance than the state-of-art results on the PolyU palmprint database. A new local pattern method, named Derivative Code Pattern (DCP), is further introduced to calculate the local pattern feature based on Dervativecode for object recognition. Similar to local binary pattern (LBP), DCP can be further combined with Gabor features and modeled by spatial histogram. To evaluate the performance of DCP and Gabor-DCP, we test them on the FERET and PolyU infrared face databases, and experimental results show that the proposed method achieves a better result than LBP and some state-of-the-arts.
장문인식은 손바닥 중앙부에 나타난 손금과 주름의 패턴을 이용하여 개인을 식별하는 것으로, 효과적인 장문인식을 위해서는 이러한 패턴이 나타나는 관심영역(ROI: region of interest)에 대한 안정적인 추출이 필요하다. 본 논문에서는 윤곽선의 형태 정보를 토대로 적응적으로 굴곡점의 위치를 찾아내고 이로부터 ROI를 추출하는 방법을 제안한다. 제안된 방법의 성능을 확인하기 위하여 유도 막대가 없는 자연스런 장문획득 장치에 의해 수집된 장문영상을 대상으로 실험을 수행하였다. 실험결과 제안된 방법은 손의 위치 변화나 회전에 무관하게 장문영상으로부터 안정적으로 ROI를 추출함을 확인할 수 있었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권9호
/
pp.2991-3007
/
2022
Two dimensional locality preserving projections (2D-LPP) is an improved algorithm of 2D image to solve the small sample size (SSS) problems which locality preserving projections (LPP) meets. It's able to find the low dimension manifold mapping that not only preserves local information but also detects manifold embedded in original data spaces. However, 2D-LPP is simple and elegant. So, inspired by the comparison experiments between two dimensional linear discriminant analysis (2D-LDA) and linear discriminant analysis (LDA) which indicated that matrix based methods don't always perform better even when training samples are limited, we surmise 2D-LPP may meet the same limitation as 2D-LDA and propose a novel matrix exponential method to enhance the performance of 2D-LPP. 2D-MELPP is equivalent to employing distance diffusion mapping to transform original images into a new space, and margins between labels are broadened, which is beneficial for solving classification problems. Nonetheless, the computational time complexity of 2D-MELPP is extremely high. In this paper, we replace some of matrix multiplications with multiple multiplications to save the memory cost and provide an efficient way for solving 2D-MELPP. We test it on public databases: random 3D data set, ORL, AR face database and Polyu Palmprint database and compare it with other 2D methods like 2D-LDA, 2D-LPP and 1D methods like LPP and exponential locality preserving projections (ELPP), finding it outperforms than others in recognition accuracy. We also compare different dimensions of projection vector and record the cost time on the ORL, AR face database and Polyu Palmprint database. The experiment results above proves that our advanced algorithm has a better performance on 3 independent public databases.
생체인식(biometrics)은 인간이 갖는 신체적 특징을 활용하여 개인을 식별하는 연구로, 비밀번호나 ID카드 등의 전통적인 개인 식별 방법을 대체하거나 보완할 수 있는 방법으로 많은 관심을 받고 있다. 생체인식의 대상 중 손가락 관절문은 지문, 홍채, 귀, 장문에 비하여 비교적 최근에 연구가 시작되었다. 본 논문은 그레이디언트 방향 특징을 이용하여 손가락 관절문을 효과적으로 인식하는 방법을 제안한다. 손가락 관절문의 주요 특징은 주름의 크기와 방향으로, 이러한 특징을 안정적으로 획득하기 위하여 불균일한 조명과 낮은 대비를 개선하는 전처리를 수행한 후 그레이디언트의 방향 정보를 추출하여 특징벡터를 구성하였다. 제안된 방법의 성능을 측정하기 위하여 158명으로부터 획득한 총 790개 손가락 관절문 영상을 대상으로 실험을 수행하였다. 실험 결과 99.69%의 인식률을 얻었으며, 기존 관련 연구에 비하여 1.882라는 높은 결정계수를 보여 제안된 방법이 손가락 관절문 인식에 효과적임을 확인하였다.
본 논문에서는 손바닥의 interdigital영역으로 부터 특징패턴을 추출하는 과정과 이 특징패턴과 관련된 자료를 이용한 개인식별 방법을 제안하였다. 처리과정은 interdigital영역을 일정한 크기로 분할하고 각 분할된 영역에 대하여 융선의 분포에 따른 4방향의 방향 코드를 부여한후 이것을 분석하는 것에 의해 특징패턴의 존재 유무와 1차 중심점을 검출하였다. 검출된 1차 중심점의 주변 제한된 영역에 대해서만 세선화와 융선 추적을 통하여 특징패턴의 종류와 2차 중심점(core)을 구하였다. 2차 중심점들을 연결하는 특징패턴 좌표계를 설정하고 각 중심점에 대한 상대적 거리와 방향정보 특징 패턴의 종류등에 대한 특징 파라미터를 구하였다. 식별실험은 각 특징패턴의 종류와 수, 존재위치에 의하여 판단하거나 특징 파라미터를 비교, 분석하는 것에 의해 수행하였다.
생체 정보를 이용한 사용자 인증은 차세대 인증 방법으로서 기존의 인증 시스템에서 급진적으로 사용되고 있는 인증 방법이다. 대부분의 생체 인증 시스템은 수집된 생체 정보가 가지는 노이즈로 인한 문제, 데이터의 품질에 대한 문제, 인식률의 한계 등 많은 문제점들을 가지고 있다. 이를 해결하기 위한 방법으로 본 논문에서는 비선형적인 실제 데이터를 정확하게 처리하기 위해 비선형기법인 Dual QML을 사용하고, 또한 정확한 영역을 추출하여 인증의 정확도를 증가시키는 전처리 과정을 추가로 제안하여 정확도 증가뿐만 아니라 성능을 향상시키는 방법을 제안하고자 한다. 앞서 발표된 Dual QML은 생체 정보로 얼굴, 장문, 귀를 사용하였다. 본 논문은 앞선 Dual QML 실험에 사용하지 않은 홍채를 생체 정보로 사용하여 홍채 인식을 위한 방법으로도 Dual QML이 우수하다는 것을 보이고자 한다. 마지막으로 실험을 통해 이에 대한 실증을 보이고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.