• 제목/요약/키워드: Paleo-environment

Search Result 46, Processing Time 0.023 seconds

Distribution Characteristics of Land and River Aggregate Resources in Yeongam Area by Deposition Period (영암지역 육상 및 하천 골재의 퇴적 시기별 분포 특성)

  • Jin Cheul Kim;Sei Sun Hong;Jin-Young Lee;Ju Yong Kim
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.243-251
    • /
    • 2024
  • In this study, a surface geological survey was first conducted to investigate aggregate resources in the Yeongam area of Jeollanam-do, and a drilling survey was conducted in the lower part of the surface, which was difficult to identify through a surface geological survey, to determine the spatial distribution of aggregates. Drilling sites were selected considering the topographical development and Quaternary alluvium characteristics of the study area, and river aggregate drilling surveys were conducted at a total of 5 points and land aggregate drilling surveys were conducted at a total of 28 points. Borehole core sediments were classified into seven sedimentary units to determine whether they could be used as aggregates, and optically stimulated luminescence dating was performed on representative boreholes to measure the depositional period for each sedimentary unit. As a result of the study, most of the Yeongam area had a very wide river basin, so it was estimated that there would be a large amount of aggregate, but the amount of aggregate was evaluated to be very small compared to other cities and counties. Most of the unconsolidated sedimentary layers in the Yeongam area are composed of blue-grey marine clay with a vertical thickness of more than 10 m. The sand-gravel layer corresponding to the aggregate section is distributed in the lower part of the marine clay, thinly covering the bedrock weathering zone. This is because the amount of aggregates themselves is small and most of the aggregates are distributed at a depth of 10 m below the surface, which is currently difficult to develop, so the possibility of developing aggregates is evaluated to be very low. As a result of dating, it can be seen that the blue-grey marine clay layer is an intertidal sedimentary layer formed as the sea level rose rapidly about 10,000 years ago. The deposition process continued from 10,000 years ago to the present, and as a result, a very thick clay layer was deposited. This clay layer was formed very dominantly for about 6,000 to 8,000 years, and the sand-gravel layer in the section where aggregates deposited in the Pleistocene period can exist was measured to have been deposited at about 13.0 to 19.0 ka, and about 50 ka, showing that it was deposited as paleo-fluvial deposits before the marine transgression process.

Site Selection for Geologic Records of Extreme Climate Events based on Environmental Change and Topographic Analyses using Paleo Map for Myeongsanimni Coast, South Korea (고지도 기반 환경변화연구 및 지형분석을 통한 명사십리 해안의 제4기 연안지대 이상기후 퇴적기록 적지선정)

  • Kim, Jieun;Yu, Jaehyung;Yang, Dongyoon
    • Economic and Environmental Geology
    • /
    • v.47 no.6
    • /
    • pp.589-599
    • /
    • 2014
  • This study selected optimal sites in Myeongsasimni located in west coast of Korea for stratigraphic research containing extreme climate event during quaternary period by spatio-temporal analyses of changes in sedimentary environment and land use employing 1918 topographic map, 2000 digital terrain map, 1976 and 2012 air photographies. The study area shows no significant changes in topographic characteristics that hilly areas with relatively large variations in elevation are distributed over north and south part of the study area, and sand dues are developed along the coast line. Moreover, flat low lying areas are located at the back side of the sand dues. The movement of surface run off and sediment loads shows two major trends of inland direction flow from back sides of sand dunes and outland direction flow from high terrains inland, and the two flows merge into the stream located in the center of the study area. Two sink with individual area of $0.2km^2$ are observed in Yongjeong-ri and Jaryong-ri which are located in south central part and south part of the study area, respectively. In addition, sea level change simulation reveals that $3.4km^2$ and $3.64km^2$ are inundated with 3 m of sea level rise in 1918 and 2000, respectively, and it would contribute to chase sea level change records preserved in stratigraphy. The inundated areas overlaps well with sink areas where it indicates the low lying areas located in south cental and south part of the study area are identical for sediment accumulation. The areas with minimal human impact on sediment records over last 100 years are $3.51km^2$ distributed over central and south part of the study area with the land use changes of mud and rice field in 1918 to rice field in 2012. The candidate sites of $0.15km^2$ in central part and $0.09km^2$ in south part are identified for preferable locations of geologic record of extreme climate events during quaternary period based on the overlay analysis of optimal sedimentary environment and land use changes.

Sedimentary History and Tectonics in the Southeastern Continental Shelf of Korea based on High Resolution Shallow Seismic Data. (고해상탄성파탐사자료에 의한 한국남동대륙붕의 퇴적사 및 조구조운동)

  • Min Geon Hong;Park Yong Ahn
    • The Korean Journal of Petroleum Geology
    • /
    • v.5 no.1_2 s.6
    • /
    • pp.1-8
    • /
    • 1997
  • Seismic stratigraphic analysis of the high resolution profiles obtained from the southeastern shelf of Korea divided the deposits into 4 sequences; 1) sequence D, 2) sequence C, 3) sequence B and 4) sequence A (Holocene sediments). Sequence D was deposited in shallow-water environment at west of the Yangsan Fault as the basin subsided. On the other hand, the eastern part was formed at the slope front. Landward part of the slope-front fill sediments were eroded and redeposited nearby slope due to the syndepositional tilting of the basin. This tilting probably resulted from the continuous closing of the Ulleung Basin. Sequence C is made of stacked successions of the lowstand fluvial sediments, transgressive sediments and marine highstand sediments derived from the paleo-river in the western part of the Yangsan Fault. Sequence C in the eastern part of the Yanshan Fault was formed at the shelf break. Progradation of the lowstand sediments resulted in broadening of the shelf. Sequence C in the eastern part was also tilted but the tilting was weaker than in Sequence D. During the formation of sequence B the tilting stopped and the point source instead of the line source started in both sides of the Yangsan Fault. Sequence B was composed of the highstand systems tract partially preserved around the Yokji island, lowstand systems tract mainly preserved in the Korea Trough and transgressive systems tract. After the stop of the tilting, the force of compression due to the closing of the Ulleung Basin may be released by the strike-slip faults instead of tilting.

  • PDF

Mineralogical Characteristics of Marine Sediments Cores from Uleung Basin and Hupo Basin, East Sea (동해 울릉분지와 후포분지 해양 퇴적물 코어의 광물학적 특성)

  • Lee, Su-Ji;Kim, Chang-Hwan;Jun, Chang-Pyo;Lee, Seong-Joo;Kim, Yeongkyoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.71-81
    • /
    • 2015
  • This study was carried out in order to investigate the mineralogical characteristics of the core sediments (03GHP-02 and HB13-2), obtained from the Ulleung Basin and Hupo Basin, Korea. The results on mineral compositions, clay mineral compositions, and the total contents and sequential extraction of different fractions of the phosphorus in core samples showed that those values are different in two cores and also at different depths. In both samples, mineral compositions were the same, composed mainly of quartz, microcline, albite, calcite, opal A, pyrite, and clay minerals (illite, chlorite, kaolinite, and smectite). However, the sample from Hupo Basin contains more opal A. Both samples, especially the ones from Hupo Basin contains more smectite than those reported from East Sea, indicating the influence of paleo-Hwangwei River and the Tertiary Formation of Korea Peninsula. For the samples from Uleung Basin, at 0.7-3.5 m range in depth, the low content of opal A and the low illite crystallinity index can be inferred to indicate the relatively cool climate, corresponding to the ice age. Also, the content of total phosphorus was low in those samples. It was reported that East Sea at that time was isolated from the neighboring seas due to the decrease of the sea level, and as a result, the influx of sediments was supposed to be little through the strait and rivers. For the samples from Hupo Basin, there is no significant changes in clay mineral composition and the distribution of phosphorus with increasing depth. This little change can be interpreted to indicate that the sediments comprising the core might be deposited in a relatively short period of time or deposited in sedimentary environment in which there's no significant changes in sediment supplies. The values of crystallinity index of clay minerals are high in those samples, indicating that it was relatively warm during that time. Although the increase of fluctuation pattern can be observed, showing that the climate of this period often changed, it is supposed that it was generally warm.

Value of Geologic·Geomorphic Resources of Danyang-gun and Its Application from Geotourism Perspective (단양지역 지질·지형자원의 가치와 지오투어리즘 관점에서의 활용방안)

  • Jeong, Su-Ho;Gwon, Ohsang;Kim, Taehyung;Naik, Sambit Prasanajt;Lee, Jinhyun;Son, Hyorok;Kim, Young-Seog
    • Economic and Environmental Geology
    • /
    • v.53 no.1
    • /
    • pp.45-69
    • /
    • 2020
  • In Danyang area, various geological structures as well as various lithology and strata are well developed, which are useful for studying paleo-environment and structural movements, and also typical karst landforms, wethering landforms and river landforms. If geologically and geomorphologically valuable resources are used in terms of geotourim perspective, it is expected that revitalization of regional economy through diversification of attracting factors and employment creation of local people. Danyang has many excellent geological resources for geological field trip, they can greatly contribute to the development of geology such as expanding the base of geology and cultivating successive generations. In this study, we have evaluated newly discovered sites and previously excavated resources based on academical and educational values. By using these geological and geomorphological resources, we suggest three geotrail courses as follows. First, Geo-trail A is mainly focused on geological structures (Route A: Jeong Hwan Route), where we can learn geological deformation and movement through various brittle and ductile deformation structures. Second, Geo-trail B is mainly focused on stratigraphic importance (Route B: Soon-Bok Route), which emphasizes on various rocks, strata and contact relationship. Third, Geo-trail C is mainly focused on geomorphological landforms and landscapes (Route C: Satgat Route), which provide information about different geomorphological landforms and the interaction between different geological agents. In order to operate these geotrail courses efficiently, installation of explanation boards and view points, cultivate local commentators, and visitor centers and experience programs should be properly prepared together.

Occurrence and Chemical Composition of Dolomite from Zhenzigou Pb-Zn Deposit, China (중국 젠지고우 연-아연 광상의 돌로마이트 산상과 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.3
    • /
    • pp.177-191
    • /
    • 2021
  • The Zhenzigou Pb-Zn deposit, one of the largest Pb-Zn deposit in the northeast of China, is located at the Qingchengzi mineral field in Jiao Liao Ji belt. The geology of this deposit consists of Archean granulite, Paleoproterozoinc migmatitic granite, Paleo-Mesoproterozoic sodic granite, Paleoproterozoic Liaohe group, Mesozoic diorite and monzoritic granite. The Zhenzigou deposit which is a strata bound SEDEX or SEDEX type deposit occurs as layer ore and vein ore in Langzishan formation and Dashiqiao formation of the Paleoproterozoic Liaohe group. Based on mineral petrography and paragenesis, dolomites from this deposit are classified three type (1. dolomite (D0) as hostrock, 2. dolomite (D1) in layer ore associated with white mica, quartz, K-feldspar, sphalerite, galena, pyrite, arsenopyrite from greenschist facies, 3. dolomite (D2) in vein ore associated with quartz, apatite and pyrite from quartz vein). The structural formulars of dolomites are determined to be Ca1.00-1.03Mg0.94-0.98Fe0.00-0.06As0.00-0.01(CO3)2(D0), Ca0.97-1.16Mg0.32-0.83Fe0.10-0.50Mn0.01-0.12Zn0.00-0.01Pb0.00-0.03As0.00-0.01(CO3)2(D1), Ca1.00-1.01Mg0.85-0.92Fe0.06-0.11 Mn0.01-0.03As0.01(CO3)2(D2), respectively. It means that dolomites from the Zhenzigou deposit have higher content of trace elements compared to the theoretical composition of dolomite. Feo and MnO contents of these dolomites (D0, D1 and D2) contain 0.05-2.06 wt.%, 0.00-0.08 wt.% (D0), 3.53-17.22 wt.%, 0.49-3.71 wt.% (D1) and 2.32-3.91 wt.%, 0.43-0.95 wt.% (D2), respectively. The dolomite (D1) from layer ore has higher content of these trace elements (FeO, MnO, ZnO and PbO) than dolomite (D0) from hostrock and dolomite (D2) from quartz vein. Dolomites correspond to Ferroan dolomite (D0 and D2), and ankerite and Ferroan dolomite (D1), respectively. Therefore, 1) dolomite (D0) from hostrock is a Ferroan dolomite formed by marine evaporative lagoon environment in Paleoproterozoic Jiao Liao Ji basin. 2) Dolomite (D1) from layer ore is a ankerite and Ferroan dolomite formed by hydrothermal metasomatism origined metamorphism (greenschist facies) associated with Paleoproterozoic intrusion. 3) Dolomte (D2) from quartz vein is a Ferroan dolomite formed by hydrothermal fluid origined Mesozoic intrusion.