• Title/Summary/Keyword: Pairing Mechanism

Search Result 26, Processing Time 0.019 seconds

Constant inversion black box model of EDFAs including various loss mechanisms (Loss mechanism을 고려한 밀도 반전이 고정된 EDFA의 black box 모델링에 대한 연구)

  • 민범기;이원재;박재형;박남규
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.3
    • /
    • pp.205-211
    • /
    • 2001
  • We propose a constant inversion black box model of erbium-doped fiber amplifiers (EDFAs) for exact performance predictions for EDFAs operated in the gain-flattened condition. The validity of the newly proposed model was experimentally verified by predicting the performance of EDFAs for the L band, within 1.9% required pump power discrepancy. The role of ion pairing effects on the power conversion efficiency is also discussed. ussed.

  • PDF

Recent Advancement on the Knowledges of Meiotic Division (I) (減數分裂, 最近의 進步(I))

  • 한창열
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.6
    • /
    • pp.453-475
    • /
    • 1998
  • During the 100 years since the initial discovery of meiotic phenomenon many brilliant aspects have been elucidated, but further researches based on light microscopy alone as an experimental tool have been found to have some limits and shortcomings. By the use of electron microscopy and armed with the advanced knowledges on modern genetics and biochemistry it has been possible to applu molecular technology in gaining information on the detailed aspects of meiosis. As synapsis takes place, a three-layered proteinous structure called the synatonemal complex starts to form in the space between the homologous chromosomes. To be more precise, it begins to form along the paired chromosomes early in the prophase I of meiotic division. The mechanism that leads to precise point-by-point pairing between homologous chromocomes division. The mechamism that leads to precise point-by-point pairing between homologous chromosomes remains to be ascertained. Several items of information, however, suggest that chromsome alignment leading to synapsis may be mediated somehow by the nuclear membrane. Pachytene bivalents in eukaryotes are firmly attached to the inner niclear membrane at both termini. This attached begins with unpaired leptotene chromosomes that already have developed a lateral element. Once attached, the loptotene chromosomes begin to synapse. A number of different models have been proposed to account for genetic recombination via exchange between DNA strands following their breakage and subsequent reunion in new arrangement. One of the models accounting for molecular recombination leading to chromatid exchange and chiasma formation was first proposed in 1964 by Holliday, and 30 years later still a modified version of his model is favored. Nicks are made by endomuclease at corresponding sites on one strant of each DNA duplex in nonsister chromatid of a bivalent during prophase 1 of meiosis. The nicked strands loop-out and two strands reassociate into an exchanged arrangement, which is sealed by ligase. The remaining intact strand of each duplex is nicked at a site opposite the cross-over, and the exposed ends are digested by exonuclease action. Considerable progress has been made in recent years in the effort to define the molecular and organization features of the centromere region in the yeast chromosome. Centromere core region of the DNA duplex is flanked by 15 densely packed nucleosomes on ons side and by 3 packed nucleosomes on the other side, that is, 2000 bp on one side and 400 400 bp in the other side. All the telomeres of a given species share a common DNA sequence. Two ends of each chromosome are virtually identical. At the end of each chromosome there exist two kinds of DNA sequence" simple telpmeric sequences and telpmere-associated sequencies. Various studies of telomere replication, function, and behabior are now in progress, all greatly aided by molecular methods. During nuclear division in mitosis as well as in meiosis, the nucleili disappear by the time of metaphase and reappear during nuclear reorganizations in telophase. When telophase begins, small nucleoli form at the NOR of each nucleolar-organizing chromosome, enlarge, and fuse to form one or more large nucleoli. Nucleolus is a special structure attached top a specific nucleolar-organizing region located at a specific site of a particular chromosome. The nucleolus is a vertical factory for the synthesis of rRNAs and the assenbly of ribosome subunit precursors.sors.

  • PDF

Reversed-Phase Ion-Pair High Performance Liquid Chromatographic Elution Behavior of Noble Metal-Thiacrown Ether Complexes (귀금속-티아크라운에테르 착물들의 역상 이온쌍 고성능 액체크로마토그래피 용리거동)

  • Chung, Yong Soon;Kim, Dong Won;Lee, Kang Woo;Kim, Chang Seok
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.4
    • /
    • pp.416-421
    • /
    • 1998
  • In the reversed-phase ion-pair high performance liquid chromatographic (RPIP-HPLC) elution behavior of noble metal-thiacrown ether complexes, the effects of the concentration of ion-pairing reagent and kind of ligands were studied. It was found that the less the number of atoms in the ring of the thiacrown ether molecule was, the larger the selectivity was, and the elution mechanism of the complexes was explained due to the formation of ion-pair when the concentration of sodium dodecyl sulfate (SDS) in mobile phase was lower than 10 mM and due to the formation of micelle when the SDS concentration was higher than 10 mM. As a conclusion, separations of the noble metal-thiacrown ether complexes in an optimum separation condition were accomplished successfully and the method was proved to be an useful one for the separation and determination of Ag (Ⅰ) ion in a black-white photographic fixing solution.

  • PDF

Mechanisms for Hfq-Independent Activation of rpoS by DsrA, a Small RNA, in Escherichia coli

  • Kim, Wonkyong;Choi, Jee Soo;Kim, Daun;Shin, Doohang;Suk, Shinae;Lee, Younghoon
    • Molecules and Cells
    • /
    • v.42 no.5
    • /
    • pp.426-439
    • /
    • 2019
  • Many small RNAs (sRNAs) regulate gene expression by base pairing to their target messenger RNAs (mRNAs) with the help of Hfq in Escherichia coli. The sRNA DsrA activates translation of the rpoS mRNA in an Hfq-dependent manner, but this activation ability was found to partially bypass Hfq when DsrA is overproduced. The precise mechanism by which DsrA bypasses Hfq is unknown. In this study, we constructed strains lacking all three rpoS-activating sRNAs (i.e., ArcZ, DsrA, and RprA) in $hfq^+$ and $Hfq^-$ backgrounds, and then artificially regulated the cellular DsrA concentration in these strains by controlling its ectopic expression. We then examined how the expression level of rpoS was altered by a change in the concentration of DsrA. We found that the translation and stability of the rpoS mRNA are both enhanced by physiological concentrations of DsrA regardless of Hfq, but that depletion of Hfq causes a rapid degradation of DsrA and thereby decreases rpoS mRNA stability. These results suggest that the observed Hfq dependency of DsrA-mediated rpoS activation mainly results from the destabilization of DsrA in the absence of Hfq, and that DsrA itself contributes to the translational activation and stability of the rpoS mRNA in an Hfq-independent manner.

Protein tRNA Mimicry in Translation Termination

  • Nakamura, Yoshikazu
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2001.06a
    • /
    • pp.83-89
    • /
    • 2001
  • Recent advances in the structural and molecular biology uncovered that a set of translation factors resembles a tRNA shape and, in one case, even mimics a tRNA function for deciphering the genetic :ode. Nature must have evolved this 'art' of molecular mimicry between protein and ribonucleic acid using different protein architectures to fulfill the requirement of a ribosome 'machine'. Termination of protein synthesis takes place on the ribosomes as a response to a stop, rather than a sense, codon in the 'decoding' site (A site). Translation termination requires two classes of polypeptide release factors (RFs): a class-I factor, codon-specific RFs (RFI and RF2 in prokaryotes; eRFI in eukaryotes), and a class-IT factor, non-specific RFs (RF3 in prokaryotes; eRF3 in eukaryotes) that bind guanine nucleotides and stimulate class-I RF activity. The underlying mechanism for translation termination represents a long-standing coding problem of considerable interest since it entails protein-RNA recognition instead of the well-understood codon-anticodon pairing during the mRNA-tRNA interaction. Molecular mimicry between protein and nucleic acid is a novel concept in biology, proposed in 1995 from three crystallographic discoveries, one, on protein-RNA mimicry, and the other two, on protein-DNA mimicry. Nyborg, Clark and colleagues have first described this concept when they solved the crystal structure of elongation factor EF- Tu:GTP:aminoacyl-tRNA ternary complex and found its overall structural similarity with another elongation factor EF-G including the resemblance of part of EF-G to the anticodon stem of tRNA (Nissen et al. 1995). Protein mimicry of DNA has been shown in the crystal structure of the uracil-DNA glycosylase-uracil glycosylase inhibitor protein complex (Mol et al. 1995; Savva and Pear 1995) as well as in the NMR structure of transcription factor TBP-TA $F_{II}$ 230 complex (Liu et al. 1998). Consistent with this discovery, functional mimicry of a major autoantigenic epitope of the human insulin receptor by RNA has been suggested (Doudna et al. 1995) but its nature of mimic is. still largely unknown. The milestone of functional mimicry between protein and nucleic acid has been achieved by the discovery of 'peptide anticodon' that deciphers stop codons in mRNA (Ito et al. 2000). It is surprising that it took 4 decades since the discovery of the genetic code to figure out the basic mechanisms behind the deciphering of its 64 codons.

  • PDF

Forward-Secure Public Key Broadcast Encryption (전방향 안전성을 보장하는 공개키 브로드캐스트 암호 기법)

  • Park, Jong-Hwan;Yoon, Seok-Koo
    • Journal of Broadcast Engineering
    • /
    • v.13 no.1
    • /
    • pp.53-61
    • /
    • 2008
  • Public Key Broadcast Encryption (PKBE) allows a sender to distribute a message to a changing set of users over an insecure channel. PKBE schemes should be able to dynamically exclude (i.e., revoke) a certain subset of users from decrypting a ciphertext, so that only remaining users can decrypt the ciphertext. Another important requirement is for the scheme to be forward-secrecy. A forward-secure PKBE (fs-PKBE) enables each user to update his private key periodically. This updated private key prevents an adversary from obtain the private key for certain past period, which property is particularly needed for pay-TV systems. In this paper, we present a fs-PKBE scheme where both ciphertexts and private keys are of $O(\sqrt{n})$ size. Our PKBE construction is based on Boneh-Boyen-Goh's hierarchical identity-based encryption scheme. To provide the forward-secrecy with our PKBE scheme, we again use the delegation mechanism for lower level identities, introduced in the BBG scheme. We prove chosen ciphertext security of the proposed scheme under the Bilinear Diffie-Hellman Exponent assumption without random oracles.