• Title/Summary/Keyword: Paid News

Search Result 23, Processing Time 0.016 seconds

A Study on the Relationships among SNS Characteristics, Satisfaction and User Acceptance

  • Ko, Changbae;Yoon, Jongsoo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.11
    • /
    • pp.143-150
    • /
    • 2015
  • Social network services can be defined as an individual web page which enables online, human-relationship building by collecting useful information and sharing it with specific or unspecific people. Recently, as the social network services(SNS) such as Twitter and Facebook have been paid attention in many fields of the society. SNSs are also one of the fastest channels to get news which people may not be able to see on TV or newspaper. The number of people who feel they are benefiting from social network services are increasing dramatically. A number of researches about SNS are underway. The study based on the Technology Acceptance Model empirically investigates the relationship between characteristics of SNS (system, service, information, and emotional) and user satisfaction of SNS. The study also analyzes how the relationshipa between SNS characteristics, satisfaction and user acceptance are moderated by country type of SNS users and inclination toward SNS acceptance. To achieve these research purposes, the study conducted various statistical analyses using questionnaire of the Korean and Chinese SNS users. The results of the study are followings. First, SNS characteristics have a positive effect to the user satisfaction. Second, SNS satisfaction have a positive effect to the user acceptance. Third, the relationship between SNS characteristics and user satisfaction is moderated by the country type of SNS users and inclination toward SNS acceptance. The study results could provide some implications to researchers who have interest in studying SNS, also could help business managers to operate and develop their SNS site more effectively.

Why Are People Wearing Masks When They Are Relieved of Their Obligation? -Choosing Under Uncertainty by News Big Data Analysis (착용 의무 해제에도 마스크를 쓰는 이유 -뉴스 빅데이터 분석으로 확인한 불확실성하의 선택)

  • Ki-Ryang Seo;SangKhee Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.113-119
    • /
    • 2023
  • Despite the lifting of the mandatory wearing of masks, which was the main tool of the COVID-19 quarantine policy, we paid attention to the fact that some people are still wearing masks, and we wanted to clarify why people do not take off their masks. Through a survey in this regard, we were able to ascertain why some people continue to wear masks in a broader context. In this article, we directly and indirectly confirm the hidden side of citizens' continued wearing of masks by analyzing how the lifting of the mask-wearing obligation was reported in media articles that have a significant impact on citizens' behavior and attitude. Through this, it was confirmed that citizens continue to wear masks to protect themselves in an uncertain situation where the COVID-19 endemic has not been declared, despite the quarantine authorities' announcement of lifting the mandatory wearing. In a situation where crises such as COVID-19 are expected to repeat frequently in the future, it was concluded that it is important to build trust in the quarantine authorities.

Analysis of Twitter for 2012 South Korea Presidential Election by Text Mining Techniques (텍스트 마이닝을 이용한 2012년 한국대선 관련 트위터 분석)

  • Bae, Jung-Hwan;Son, Ji-Eun;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.141-156
    • /
    • 2013
  • Social media is a representative form of the Web 2.0 that shapes the change of a user's information behavior by allowing users to produce their own contents without any expert skills. In particular, as a new communication medium, it has a profound impact on the social change by enabling users to communicate with the masses and acquaintances their opinions and thoughts. Social media data plays a significant role in an emerging Big Data arena. A variety of research areas such as social network analysis, opinion mining, and so on, therefore, have paid attention to discover meaningful information from vast amounts of data buried in social media. Social media has recently become main foci to the field of Information Retrieval and Text Mining because not only it produces massive unstructured textual data in real-time but also it serves as an influential channel for opinion leading. But most of the previous studies have adopted broad-brush and limited approaches. These approaches have made it difficult to find and analyze new information. To overcome these limitations, we developed a real-time Twitter trend mining system to capture the trend in real-time processing big stream datasets of Twitter. The system offers the functions of term co-occurrence retrieval, visualization of Twitter users by query, similarity calculation between two users, topic modeling to keep track of changes of topical trend, and mention-based user network analysis. In addition, we conducted a case study on the 2012 Korean presidential election. We collected 1,737,969 tweets which contain candidates' name and election on Twitter in Korea (http://www.twitter.com/) for one month in 2012 (October 1 to October 31). The case study shows that the system provides useful information and detects the trend of society effectively. The system also retrieves the list of terms co-occurred by given query terms. We compare the results of term co-occurrence retrieval by giving influential candidates' name, 'Geun Hae Park', 'Jae In Moon', and 'Chul Su Ahn' as query terms. General terms which are related to presidential election such as 'Presidential Election', 'Proclamation in Support', Public opinion poll' appear frequently. Also the results show specific terms that differentiate each candidate's feature such as 'Park Jung Hee' and 'Yuk Young Su' from the query 'Guen Hae Park', 'a single candidacy agreement' and 'Time of voting extension' from the query 'Jae In Moon' and 'a single candidacy agreement' and 'down contract' from the query 'Chul Su Ahn'. Our system not only extracts 10 topics along with related terms but also shows topics' dynamic changes over time by employing the multinomial Latent Dirichlet Allocation technique. Each topic can show one of two types of patterns-Rising tendency and Falling tendencydepending on the change of the probability distribution. To determine the relationship between topic trends in Twitter and social issues in the real world, we compare topic trends with related news articles. We are able to identify that Twitter can track the issue faster than the other media, newspapers. The user network in Twitter is different from those of other social media because of distinctive characteristics of making relationships in Twitter. Twitter users can make their relationships by exchanging mentions. We visualize and analyze mention based networks of 136,754 users. We put three candidates' name as query terms-Geun Hae Park', 'Jae In Moon', and 'Chul Su Ahn'. The results show that Twitter users mention all candidates' name regardless of their political tendencies. This case study discloses that Twitter could be an effective tool to detect and predict dynamic changes of social issues, and mention-based user networks could show different aspects of user behavior as a unique network that is uniquely found in Twitter.