• Title/Summary/Keyword: Paenibacillus illinoisensis

Search Result 4, Processing Time 0.02 seconds

Effect of Chitinase-Producing Paenibacillus illinoisensis KJA-424 on Egg Hatching of Root-Knot Nematode (Meloidogyne incognita)

  • Jung, Woo-Jin;Jung, Soon-Ju;An, Kyu-Nam;Jin, Yu-Lan;Park, Ro-Dong-;Kim, Kil-Yong;Shon, Bo-Kyoon;Kim, Tae-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.865-871
    • /
    • 2002
  • A bacterium having strong chitinolytic activity on $0.2\%$ colloidal chitin-containing agar medium was isolated from coastal soil in Korea. Based on the nucleotide sequence of conserved segment of a 165 rRNA gene, the bacterium was identified as Paenibacillus illinoisensis KJA-424. The population of P. illinoisensis KJA-424 and chitinase activity significantly increased for the first 2 days of incubation. On SDS-PACE analysis with $0.01\%$ glycol chitin, three protein bands (63, 54, and 38 kDa) with chitinolytic activity were detected tooted. The effect of P illinoisensis KJA-424 on the egg hatch of root-knot nematode (Meloidogyne incognita) was investigated. After 7 days of incubation with the chitinase-producing P. illinoisensis KJA-424, none of the eggs hatched, whereas a $39.8\%$ egg hatching rate was observed in the water control. Inverted and scanning electron microscopic observations demonstrated that P. illinoisensis KJA-424 deformed and destroyed the eggshell of M. incognita. In conclusion, chitinase-produced by p. illinoisensis KJA-424 caused the lysis of M. incognita eggshell and resulted in the inhibition of egg hatching in vitro.

A report of eight unrecorded radiation resistant bacterial species in Korea isolated in 2018

  • Jang, Jun Hwee;Sathiyaraj, Gayathri;Sathiyaraj, Srinivasan;Lee, Jin Woo;Kim, Ju-Young;Maeng, Soohyun;Lee, Ki-Eun;Lee, Eun young;Kang, Myung Suk;Kim, Myung Kyum
    • Journal of Species Research
    • /
    • v.7 no.3
    • /
    • pp.210-221
    • /
    • 2018
  • Eight bacterial strains assigned to the phylum Firmicutes were isolated from the soil samples in Korea. Phylogenetic analysis based on 16S rRNA gene sequences showed that strains 18JY14-16, 18JY14-35, 18JY42-5, 18JY12-20, 18JY35-8, 18JY76-9, 18JY39-1 and 18JY54-12 were most closely related to Paenibacillus lupini (MH497638; 99.4%), Paenibacillus illinoisensis (MH497643; 99.8%), Paenibacillus tundrae (MH497658; 99.7%), Paenibacillus selenitireducens (MH497639; 99.4%), Paenibacillus eucommiae (MH 497640; 99.9%), Paenibacillus vini (MH497654; 99.4%), Paenibacillus gorillae (MH497647; 99.5%), and Paenibacillus macquariensis (MH497649; 99.9%) respectively. These Paenibacillus species were Gram-stain-positive, rod-shaped and radiation resistant bacteria. This is the first report of these nine bacterial species in Korea.

Purification and Characterization of Chitinase from Paenibacillus illinoisensis KJA-424

  • JUNG WOO JIN;KUK JU HEE;KIM KIL YONG;KIM TAE HWAN;PARK RO DONG
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.274-280
    • /
    • 2005
  • A chitinase was purified from the culture supernatant of Paenibacillus illinoisensis KJA-424 by protein precipitation, DEAE-Sephadex anion-exchange chromatography, and Sephadex G-150 gel filtration. The molecular weight of the purified chitinase was 54 kDa on SDS-PAGE and activity staining. Optimal pH and temperature were pH 5.0 and 60$^{circ}$C, the presence of 10 ruM Ag$^{+}$ and Hg$^{2+}$ inhibited the activity by $92.1/%$ and $97.7/%$, and the K$_{m}$ and V$_{max}$ values were 1.12 mg chitin mrl and 1.48$\mu$mol GlcNAc min$^{-1}$, respectively. The enzyme hydrolyzed tetramer to dimer, pentamer to dimer and trimer, and hexamer to dimer, trimer and tetramer, indicating an endo-splitting mechanism. The chitinase had no hydrolytic activity toward dimer and trimer. The chitinase inhibited the mycelial growth of Rhizoctonia solani, suggesting an antifungal property.

Analysis of Microorganisms and Antibiotic Resistance in Organic Dairy Farm (유기낙농가 사육환경 중 미생물 및 항생제 내성 분석)

  • Seol, Kuk-Hwan;Kim, Hyoun-Wook;Han, Ki-Sung;Lee, Mi-Jung;Jang, Ae-Ra;Oh, Mi-Hwa;Kim, Dong-Hun;Ham, Jun-Sang
    • Journal of Dairy Science and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.81-85
    • /
    • 2011
  • Recently, antimicrobial resistance of microorganisms has been a major concern of its relation to food safety and national health, therefore, customer's needs to organic animal food is still increasing. In this study, we reviewed the usage of antimicrobials in animal farms and antimicrobial resistance of microorganisms isolated from organic dairy farm environments. The isolates from dairy farms were Acinetobacter sp., A. lwoffi, A. johnsonii, A. towneri, Aerococcus viridans, Aeromonas media, A. veronii, Bacillus pseudofirmus, B. pumilus, B. licheniformis, Corynebacterium glutamicum, Escherichia coli, Enterococcus faecium, Lysinibacillus fusiformis, Paenibacillus illinoisensis, Staphylococcus epidermidis, S. hominis, Streptococcus equinus, S. lutetiensis, and Saccharomyces cerevisiae. Indicator microorganisms isolated from organic dairy farms were tested for susceptibility to 20 types of antimicrobials. E. coli (ATCC 25922) isolated from dairy farm fence showed resistance to 8 types of antimicrobials, such as oxacillin, penicillin, vancomycin, etc., and E. faecium isolated from feces showed resistance to 9 types of antimicrobials, such as cephalothin, oxacillin, streptomycin, etc., respectively. However, these results showed less antimicrobial resistance compare with customary dairy farm.

  • PDF