• Title/Summary/Keyword: Paddy Fields

Search Result 1,049, Processing Time 0.027 seconds

Characteristics of Suspended Solids Export from Paddy Fields (논에서의 SS 유출 특성)

  • Lee, Kyoungsook;Jung, Jaewoon;Choi, Dongho;Yoon, Kwangsik;Choi, Woojung;Choi, Soomyung;Lim, Sangsun;Park, Hana;Lim, Byungjin;Choi, Gangwon
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.868-876
    • /
    • 2011
  • A five-year field monitoring was conducted to monitor characteristics of suspended solid (SS) export from paddy fields. The observed EMCs of SS ranged 1.2~517 mg/L (avg. 52.1 mg/L) during storm period. The concentration of SS during non-storm period were 1.1~349.5 mg/L (avg. 36.1 mg/L). Monthly load of SS was high during summer when rainfall amount was high. The load was higher than that of May when tillage effect is expected. There was no significant relationship between SS EMCs and rainfall or drainage amount. However, effects of rainfall and drainage were found to be significant for event load of SS. But, there was no apparent relationship between rainfall amount of cropping period and load of SS for that period. The observed SS load was 164.8~456.0 kg/ha (avg. 301.2 kg/ha) and mostly occurred during storm period. This study results also suggested that SS load estimation by USLE equation for paddy field could be overestimated, if not carefully handled. Monitoring studies for various climate, soil, and agricultural management are required to get better scope of SS export from paddy fields.

Comparison of Soil Pore Properties between Anthropogenic and Natural Paddy Field Soils From Computed Tomographic Images

  • Chun, Hyen Chung;Jung, Ki-Yuol;Choi, Young Dae;Jo, Su-min;Lee, Sanghun;Hyun, Byung-Keun;Shin, Kooksik;Sonn, Yeonkyu;Kang, Hang-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.351-360
    • /
    • 2015
  • Human influence on soil formation has dramatically increased with human civilization and industry development. Increase of anthropogenic soils induced researches on the anthropogenic soils; classification, chemical and physical characteristics of anthropogenic soils and plant growth from anthropogenic soils. However there have been no comprehensive analyses on soil pore or physical properties of anthropogenic soils from 3 dimensional images in Korea. The objectives of this study were to characterize physical properties of anthropogenic paddy field soils by depth and to find differences between natural and anthropogenic paddy field soils. Soil samples were taken from two anthropogenic and natural paddy field soils; anthropogenic (A_c) and natural (N_c) paddy soils with topsoil of coarse texture and anthropogenic (A_f) and natural (N_f) paddy soils with topsoil of fine texture. The anthropogenic paddy fields were reestablished during the Arable Land Remodeling Project from 2011 to 2012 and continued rice farming after the project. Natural paddy fields had no artificial changes or disturbance in soil layers up to 1m depth. Samples were taken at three different depths and analyzed for routine physical properties (texture, bulk density, etc.) and pore properties with computer tomography (CT) scans. The CT scan provided 3 dimensional images at resolution of 0.01 mm to calculate pore radius size, length, and tortuosity of soil pores. Fractal and configuration entropy analyses were applied to quantify pore structure and analyze spatial distribution of pores within soil images. The results of measured physical properties showed no clear trend or significant differences across depths or sites from all samples, except the properties from topsoils. The results of pore morphology and spatial distribution analyses provided detailed information of pores affected by human influences. Pore length and size showed significant decrease in anthropogenic soils. Especially, pores of A_c had great decrease in length compared to N_c. Fractal and entropy analyses showed clear changes of pore distributions across sites. The topsoil layer of A_c showed more degradation of pore structure than that of N_c, while pores of A_f topsoil did not show significant degradation compared with those of N_f. These results concluded that anthropogenic soils with coarse texture may have more effects on pore properties than ones with fine texture. The reestablished paddy fields may need more fundamental remediation to improve physical conditions.

Application of Italian Ryegrass-Rice Double Cropping Systems to Evaluate the Physicochemical Properties of Soil and Yield and Quality of Rice in Paddy Field in Southern Parts of Korea (남부지역 논에서 토양의 이화학적 특성 및 벼의 생산성과 미질 향상을 위한 이탈리안 라이그라스-벼 이모작 작부체계의 적용)

  • Oh, Seo Young;Oh, Seong Hwan;Seo, Jong Ho;Choi, Jisu
    • Journal of Environmental Science International
    • /
    • v.30 no.8
    • /
    • pp.659-671
    • /
    • 2021
  • The physicochemical properties of soil and the yield and quality of rice (Oryza sativa L. cv. Sailmi) were assessed using Italian ryegrass (Lolium multiflorum Lam. cv. Kowinearly)-rice double cropping systems in the paddy fields at Goseong and Miryang in southern Korea. The average temperatures during the ripening period were approximately 1 ℃ higher than the optimal temperature for rice ripening and the sunshine duration was reduced by frequent rainfall. Consequently, it was slightly below the optimal conditions required for rice ripening. In the soil at Goseong, winter Italian ryegrass cropping increased the pH, electrical conductivity, and the contents of organic matter, total nitrogen (T-N), available P2O5, K, Ca, and Mg than winter fallowing. Particularly, the contents of T-N and available P2O5increased significantly. In the soil at Miryang, Italian ryegrass slightly increased the electrical conductivity and the T-N, Mg, and Na contents. Therefore, winter Italian ryegrass cropping improved the physicochemical properties of paddy soils; however, Italian ryegrass-rice double cropping slightly reduced the culm length at both Goseong and Miryang, without markedly changing the panicle length or number compared to fallow-rice cropping. Furthermore, at Goseong, Italian ryegrass-rice double cropping slightly decreased the spikelet number and milled rice yield, and increased the ripened grain rate; however, at Miryang, contrasting results were observed. In addition, fallow-rice cropping revealed no differences in the head rice or opaque rice rates. The protein content was slightly increased in Italian ryegrass-rice double cropping, without significant changes in the amylose content or Toyo value, compared to that in fallow-rice cropping. The peak and breakdown viscosities were slightly decreased. These results indicate that winter Italian ryegrass cropping might alter rice taste but may not exhibit remarkable negative effects on rice cultivation. Therefore, Italian ryegrass-rice double cropping system is recommended for paddy fields in southern Korea. Nevertheless, to increase the rice yield and quality, fertilization standards for rice cropping that consider the changes in the T-N and organic matter contents in paddy fields caused by winter Italian ryegrass cropping need to be established.

Characteristics of Behavior of the Nutrients at Paddy Field Area with Large-Scaled Plots (광역논에서의 영양 물질(N, P)의 거동 특성)

  • Oh, Seung-Young;Kim, Jin-Soo;Jung, Gu-Young
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.567-570
    • /
    • 2003
  • Nutrients behavior were investigated at a paddy fields area(Soro-ri) with large-scaled plots on loam soil during irrigation seasons of $2001{\sim}2002$. The average concentration of TN, TDN and TDP in drainage water was higher than that in irrigation water. On the other hand, TP in irrigation water was higher than that in drainage water. The ratio of a TDN to TN accounts for over 90% and the ratio of TDP to TP accounts for $50{\sim}70%$. Especially, the ratio of TDP to TP in drainage water was bigger than that in irrigation water, suggesting that much of particulate component was reduced due to sedimentation and adsorption in paddy fields plots.

  • PDF

LOAD CHARACTERISTICS OF ROTARY OPERATION BY TRACTOR IN WET PADDY FIELDS

  • Y. G. Wu;Kim, K. U.;Y. K. Jung
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.101-108
    • /
    • 2000
  • The torque loads were measured at the input shaft of the transmission and driving shaft of the tractor having a cage wheel attached to the driving tires as a traction aid during. a rotavating operation in wet paddy fields with deep hardpan. Their load spectra were also calculated. Effects of design parameters of the cage wheel on the load characteristics were analyzed. The torque load exerted on the input shaft decreased as diameter of the cage wheel increased and increased as the rotating speed of the rotavator increased. The torque load exerted on the driving shaft increased as the working speed of the tractor increased and decreased as the PTO speed increased. Both the torque loads with the cage wheel were greater than those without the cage wheel. The cage wheel was developed for this study.

  • PDF

Comparisons of inorganic amounts in paddy fields, rice straw and seed with varying severity of brown spot caused by Cochliobolus miyabeanus

  • Yeh, Wan-Hae;Park, Yang-Ho;Kim, I-Yeol;Kim, Yong-Ki;Shim, Hong-Sik
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.91.2-92
    • /
    • 2003
  • In order to elucidate influence of nutritional status on rice brown spot caused by Cochliobolus miyabeanus, rice cultivation soils and rice straws were collected from paddy fields where ice brown spot occurred severely, moderately, a little and none respectively. Rice plant materials were analyzed to measure inorganic nutrients in rice straws and rice seeds. Analysis of chemical properties of rice paddy soil showed that EC and contents of available phosphate, cation and silicic acid in soil with severe infections were lower than those in healthy soil. This result suggests that amount and holding capacity of nutrient contents in soils collected from paddy field with infection of C. miyabeanus are relatively low compared to those in soils collected from healthy paddy field. Analysis of inorganic nutrients in rice straws showed that amount of macronutrient elements such as silicic acids, available phosphate and total nitrogen, and micronutrients such as copper, iron and zinc in rice straws from paddy field with infection were lower than those in healthy soil. Especially amount of iron and silicic acid were very low in rice straws from paddy field soils with infection Amount of inorganic nutrients such as iron and zinc in rice seeds was the same trend as those of rice straws. These results showed that one of major factors affecting rice brown spot was amount of nutrient contents in soil and rice straw.

  • PDF

Impacts of Soil Organic Matter on Microbial Community of Paddy Soils in Gyeongnam Province

  • Son, Daniel;Sonn, Yeon-Kyu;Weon, Hang-Yeon;Heo, Jae-Young;Kim, Dae-Ho;Choi, Yong-Jo;Lee, Sang-Dae;Ok, Yong Sik;Lee, Young Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.783-788
    • /
    • 2016
  • Agricultural management of paddy soil depends on the effects of soil microbial activities. The present study evaluated the soil microbial community of 25 paddy soils in Gyeongnam Province by fatty acid methyl ester (FAME). The average of microbial communities in paddy soils were 32.2% of total bacteria, 16.7% of Gram-negative bacteria, 12.9% of Gram-positive bacteria, 2.0% of actinomycetes, 14.9% of fungi, and 1.3% of arbuscular mycorrhizal fungi. The communities of total bacteria (34.9%) and Gram-negative bacteria (19.4%) in soils with $30{\sim}35g\;kg^{-1}$ of organic matter were significantly larger than those in soils with other organic matter levels. However, soils with $20{\sim}30g\;kg^{-1}$ of organic matter had significantly low ratio of cy17:0 to $16:1{\omega}7c$ and cy19:0 to $18:1{\omega}7c$ as compared with soils with $30{\sim}35g\;kg^{-1}$ of organic matter, indicating microbial stress decreased (p < 0.05). In principal component analyses of soil microbial communities, Gram-negative bacteria should be considered as a potential responsible factor for the obvious microbial community differentiation that was observed between the two different organic matter levels in paddy fields. Thus, soils containing $20{\sim}30g\;kg^{-1}$ of organic matter were responsible for strong effect on microbial biomass and stress in paddy fields.

Status of Rice Paddy Field and Weather Anomaly in the Spring of 2015 in DPRK

  • Hong, Suk Young;Park, Hye-Jin;Jang, Keunchang;Na, Sang-Il;Baek, Shin-Chul;Lee, Kyung-Do;Ahn, Joong-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.361-371
    • /
    • 2015
  • To understand the impact of 2015 spring drought on crop production of DPRK (Democratic People's Republic of Korea), we analyzed satellite and weather data to produce 2015 spring outlook of rice paddy field and rice growth in relation to weather anomaly. We defined anomaly of 2015 for weather and NDVI in comparison to past 5 year-average data. Weather anomaly layers for rainfall and mean temperature were calculated based on 27 weather station data. Rainfall in late April, early May, and late May in 2015 was much lower than those in average years. NDVI values as an indicator of rice growth in early June of 2015 was much lower than in 2014 and the average years. RapidEye and Radarsat-2 images were used to monitor status of rice paddy irrigation and transplanting. Due to rainfall shortage from late April to May, rice paddy irrigation was not favorable and rice planting was not progressed in large portion of paddy fields until early June near Pyongyang. Satellite images taken in late June showed rice paddy fields which were not irrigated until early June were flooded, assuming that rice was transplanted after rainfall in June. Weather and NDVI anomaly data in regular basis and timely acquired satellite data can be useful for grasping the crop and land status of DPRK, which is in high demand.

The Importance and Multifunctions of Korean Paddy Fields

  • Cho Young-Son;Lee Byeong-Jin;Choe Zhin-Ryong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.2
    • /
    • pp.179-185
    • /
    • 2006
  • The Ministry of Agriculture and Forestry announced in 2001 that the overall amount of paddy land set aside for rice will be cut down by 12% by 2005, decreasing from 1.08 million to 953,000 hectares. When evaluating the value of paddy rice systems, the multi-function of paddy systems in the monsoon climate is vital importance. The main functions of paddy rice systems are to conserve biodiversity and maintain sustainability. Some crucial environmental benefits of the paddy rice systems include: flood prevention, recharge of water resources, water purification, soil erosion and landslide prevention, soil purification, landscape preservation and air purification. The paddy rice systems in Korea, which are more diverse than upland crop systems, are known to be composed of 14 orders, 36 families and 134 species. The sustain ability of paddy rice production systems can never be overestimated. Rice is part of the culture and even the heart of spiritual life in the area under the monsoon climate. Therefore paddy rice systems should be preserved with the highest priority being the enhancement of the systems' multi-function. As an outlook to future research, the need of joint and interdisciplinary research projects between economists and natural scientists at inland as well as international levels were emphasized in establishing the development of counter-measure logic through actual proofed analysis.

Water and Nutrient Balance of Paddy Field Irrigated from a Pumping Station during Cropping Period (양수장 지구 광역논으로부터 영농기간 영양물질의 유출 및 물질수지)

  • Yoon, Kwang-Sik;Han, Kuk-Heon;Cho, Jae-Young;Choi, Chang-Hyun;Son, Jae-Gwon;Choi, Jin-Kyu
    • Journal of Korean Society of Rural Planning
    • /
    • v.8 no.1 s.15
    • /
    • pp.15-25
    • /
    • 2002
  • The study was carried out to investigate the water balance and losses of nutrients from paddy fields during cropping period. The size of paddy fields was 95 ha and the fields were irrigated from a pumping station. The runoff loading was the highest in June because of the high concentrations of nutrients due to applied fertilizer, When the runoff Bosses of nutrients were compared to applied chemical fertilizer, it was found that 39.1 % to 42.5 % of nitrogen lost via runoff while runoff losses of phosphorus account for 14.5 % to 17 % of the total applied amount during cropping period. When the ratio was calculated between nutrients losses by infiltration and the applied of chemical fertilizer, two year results showed 9.1% to 10.8% for nitrogen and 0.5% for phosphorus, respectively.