• Title/Summary/Keyword: Packing porosity

Search Result 50, Processing Time 0.023 seconds

Permeability of Viscous Flow Through Packed Bed of Bidisperse Hard Spheres (이분산 구형 입자로 구성된 충전층을 흐르는 점성 유체 흐름의 투과도)

  • Sohn, Hyunjin;Koo, Sangkyun
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.66-71
    • /
    • 2012
  • We deal with a problem to determine experimentally as well as theoretically permeability of incompressible viscous flow through packed bed of bidisperse hard spheres in size. For the size ratios of large to small spheres ${\lambda}$=1.25 and 2, we set up bidisperse packing and measured porosity and permeability at various volumetric ratios of small to large spheres ${\gamma}$. Bidisperse packing shows lower porosity and permeability than monodisperse packing does. Variation of porosity as a function of ${\gamma}$ does not match with that of permeability. A theoretical expression for predicting permeability of a viscous flow for packed bed of bidisperse packing is derived based on calculation of drag force acting on each sphere and its predictions are compared with the experimental data and those from some relations previously suggested. It is found that our theory shows better agreement with experimental results than the previous studies and is proved to be quite simple and accurate in estimating the permeability.

A Statistical Study on the Warmth Retaining Properties of Fabrics (직물의 보온성에 관한 통계학적연구)

  • Lee Kwang Bae;Lee Dong Pyo
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.9 no.1
    • /
    • pp.17-27
    • /
    • 1985
  • In order to investigate the warmth retaining properties of fabrics some characteristics such as thickness. porosity, packing density, thermal conductivity, moisture regain and air permeability were measured and experimental results were analysed statistically to relate the warmth retaining properties with those characteristics. From the analysis, the following results were obtained. 1. When the warmth retaining properties of fabrics (Y) are dependent variable and thickness ($x_1$), porosity ($x_2$), packing density ($x_3$), thermal conductivity ($x_4$), moisture regain ($x_5$) and air permeability ($x_6$) are independent variables, the regression equation of warmth retaining properties can be represented as follows. 1) Y= 1.6005+46.817$x_1$, (R=0.9487) 2)Y=-1.4187+26.5072$x_1$+0.2055$x_2$(R=0.9704) 3) Y= -3.6908+17.4482$x_1$+0.1782$x_2$+28.3243$x_3$ (R=0.9756) 4) Y=0.9202+16.9553$x_1$+0. 1167$x_2$+30.3577$x_3$+1.8884$x_4$ (R=0.9792) 5) Y=0.9353+17.2266$x_1$+0.1177$x_2$+28.9821$x_3$-1.8302$x_4$+0.0151$x_5$ (R=0.9792) 6) Y=0.7583+17.2343$x_1$+0.1196$x_2$+28.8830$x_3$-1.8336$x_4$+0.0187$x_5$0.0004$x_5$ (R=0.9792) 2. The warmth retaining properties of fabrics are merely affected by adding thermal conductivity, moisture regain and multiple regression equation which contains thickness, porosity and packing density as variables. Therefore the multiple regression which contains thickness, porosity and packing density as variables Y=-3.6908+17.4482$x_1$+0.1782$x_2$+28.3243$x_3$ is highly practical.

  • PDF

A Study of Localized Corrosion Mechanisms in the Multilayered Coatings by Cathodic Arc Deposition (음극아크증착법으로 합성한 다층박막의 국부부식 기구에 관한 연구)

  • 김호건;안승호;이정호;김정구;한전건
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.4
    • /
    • pp.301-306
    • /
    • 2003
  • Multilayered WC-Ti/suv $1-x/Al_{x}$ N coatings were deposited on AISI D2 steel using cathodic arc deposition (CAD) method. These coatings contain structural defects such as pores or droplets. Thus, the substrate is not completely isolated from the corrosive environment. The growth defects (pores, pinholes) in the coatings are detrimental to corrosion resistance of the coatings used in severe corrosion environments. The localized corrosion behavior of the coatings was studied in deaerated 3.5 wt.% NaCl solution using electrochemical techniques (potentiodynamic polarization test) and surface analyses (GDOES, SEM, AES, TEM). The porosity was calculated from the result of potentiodynamic polarization test of the uncoated and coated specimens. The calculated porosity is higher in the $WC-Ti_{0.6}$ $Al_{0.4}$ N than others, which is closely related to the packing factor. The positive effects of greater packing factor act on inhibiting the passage of the corrosive electrolyte to the substrate and lowering the localized corrosion kinetics. From the electrochemical tests and surface analyses, the major corrosion mechanisms can be classified into two basic categories: localized corrosion and galvanic corrosion.

The Critical Pigment Volume Concentration Concept for Paper Coatings: II. Later-Bound Clay; Ground Calcium Carbonate, and Clay- carbonate Pigment Coatings

  • Lee, Do-Ik
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.5
    • /
    • pp.18-38
    • /
    • 2002
  • A previous study on the model coatings based on latex-bound plastic pigment coatings (1) has been extended to latex-bound No. 1 clay, ultra-fine ground calcium carbonate (UFGCC), and clay-carbonate pigment mixture coatings, which are being widely used in the paper industry. The latex binder used was a good film-forming, monodisperse S/B latex or 0.15$\mu\textrm{m}$. No. 1 clay was representative of plate-like pigment particles, whereas UFGCC was of somewhat rounded rhombohedral pigment particlel. Both of them had negatively skewed triangular particle size distributions having the mean particle suet of 0.7${\mu}{\textrm}{m}$ and 0.6$\mu\textrm{m}$, respectively. Their packing volumes were found to be 62.5% and 657%, respectively. while their critical pigment volume concentrations (CPVC's) were determined to be 52.7% and 50.5% ( average of 45% caused by the incompatibility and 55.9% extrapolated) by coating porosity, respectively. Each pigment/latex coating system has shown its unique relationship between coating properties and pigment concentrations, especially above its CPVC. Notably, the clay/latex coating system hat shown higher coating porosity than the UFGCC/latex system at high pigment concentrations above their respective CPVC's. It was also found that their coating porosity and gloss were inter-related to each other above the CPVC's, as predicted by the theory. More interestingly, the blends of these two pigments have shown unique rheological and coating properties which may explain why such pigment blends are widely used in the industry. These findings have suggested that the unique structure of clay coatings and the unique high-shear rheology of ground calcium carbonate coatings can be judiciously combined to achieve superior coatings. Importantly, the low-shear viscosity of the blends was indicative of their unique packing and coating structure, whereas their high-shear rheology was represented by a common mixing rule, i.e., a viscosity-averaging. Transmission and scanning electron and atomic force microscopes were used to probe the state of pigment / latex dispersions, coating surfaces, freeze fractured coating cross-sections, and coating surface topography. These microscopic studies complemented the above observations. In addition, the ratio, R, of CPVC/(Pigment Packing Volume) has been proposed as a measure of the binder efficiency for a given pigment or pigment mixtures or as a measure of binder-pigment interactions. Also, a mathematical model has been proposed to estimate the packing volumes of clay and ground calcium carbonate pigments with their respective particle size distributions. As well known in the particle packing, the narrower the particle size distributions, the lower the packing volumes and the greater the coating porosity, regardless of particle shapes.

A Study on The Filtration Characteristics of Magnetic Fibrous Polymeric Filter with Packing Density Profile as a New Oil Filter (윤활시스템용 오일필터로서 충전밀도 변화에 따른 자성폴리머 필터의 여과특성 연구)

  • 최기영;안병길;최웅수;권숙인;권오관
    • Tribology and Lubricants
    • /
    • v.11 no.2
    • /
    • pp.8-14
    • /
    • 1995
  • The filtration of the magnetic fibrous polymeric filter with packing density profile made of a self-bonded, nonwoven structure comprising a thermoplastic polymer and a magnetic substance was investigated using an oil filter tester, a particle quantifier and an image analyzer system. The magnetic fibrous polymeric filter showed excellent filtration efficiency compared with conventional paper filter. From the experimental results, It is deduced that the filtration mechanism of conventional paper filter is only the function of physical porosity by surface filteration. On the other hand, the newly magnetic fibrous polymeric filter is designed with a new concept in filtration mechanism. That is, it has a dual function of depth and magnetic filters by physical porosity and magnetic attraction. The newly magnetic fibrous polymeric filter has been shown to be a highly effective oil filter for lubrication systems.

Analysis on Hot Plate Welding of Thermoplastic Elastomer Packing (열가소성 엘라스토머 패킹의 열융착 해석)

  • Kim, Min Ho;Lee, Yong Tae;Chung, Jae Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.12
    • /
    • pp.477-482
    • /
    • 2016
  • Airtight containers have been widely used in many industries and household. They need a packing for sealing between the inside and outside. Previous packing materials have some drawbacks like stench, stickiness, and difficulty of applying to automated manufacturing systems. So, a new packing material which is harmless and suitable for automation is needed. This study performed a hot plate welding process of thermoplastic elastomer (TPE) as the packing material. The hot plate welding process included a phase change process of solidification and melting. The porosity-enthalpy method was adopted in order to simulate phase change problems. The TPE showed non-Newtonian fluid characteristics during the melting process. Since properties of SEBS are not well-defined, we established TPE properties by observing the melting behavior of TPE. In order to find an optimized condition, a parametric study including packing thickness, shapes, hot plate temperature, and thermal resistance, was conducted.

A Study on the Si-SiC Composites Fabricated by Pressureless Powder Packing Forming Method (무가압 분말 충전 성형법에 의해 제조된 Si-SiC 복합체에 관한 연구)

  • 박정현;임은택;성재석;최헌진;이준석
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.6
    • /
    • pp.710-718
    • /
    • 1995
  • The new forming method, Pressureless Powder Packing Forming Method was applied to the manufacturing of reaction sintered SiC. After the experiments of vibratory powder packing and binder infiltration, the abrasive SiC powder of which mean size is 45${\mu}{\textrm}{m}$ was selected to this forming method. Uniform green bodies with porosity of 45% and narrow pore size distribution could be formed by this new forming method. Also, complex or varied cross-sectional shapes could be easily manufactured through the silicone rubber mould used in this forming method. Maximum 15 wt% amorphous carbon was penetrated into green body by multi impregnation-carbonization cycles. And reaction-bonded SiC was manufactured by infiltration of SiC-carbon shaped bodies with liquid silicon.

  • PDF

Optimization of particle packing by analytical and computer simulation approaches

  • He, Huan;Stroeven, Piet;Stroeven, Martijn;Sluys, Lambertus Johannes
    • Computers and Concrete
    • /
    • v.9 no.2
    • /
    • pp.119-131
    • /
    • 2012
  • Optimum packing of aggregate is an important aspect of mixture design, since porosity may be reduced and strength improved. It may also cause a reduction in paste content and is thus of economic relevance too. Several mathematic packing models have been developed in the literature for optimization of mixture design. However in this study, numerical simulation will be used as the main tool for this purpose. A basic, simple theoretical model is used for approximate assessment of mixture optimization. Calculation and simulation will start from a bimodal mixture that is based on the mono-sized packing experiences. Tri-modal and multi-sized particle packing will then be discussed to find the optimum mixture. This study will demonstrate that computer simulation is a good alternative for mixture design and optimization when appropriate particle shapes are selected. Although primarily focusing on aggregate, optimization of blends of Portland cement and mineral admixtures could basically be approached in a similar way.

Effect of Packing Characteristics on the sintering Propertiesof Pyrophyllite (랍석분쇄물의 충전성이 그 소결성에 미치는 영향)

  • 지응업;최상욱;류태원
    • Journal of the Korean Ceramic Society
    • /
    • v.14 no.4
    • /
    • pp.236-241
    • /
    • 1977
  • Three kinds of specimen, consisting of the graded pyrophyllite particles alone, a substituent of 8 percent fire clay for the finer portion ($F_2$) of it, and 0.8 percent inorganic binder-added composite were prepared under the following conditions respectively; moisture content=4.5~5.0%, forming pressure=250kg/$\textrm{cm}^2$ and sintering temperature=1, 000~1, 30$0^{\circ}C$. The various properties such as modulus of rupture, apparent porosity, bulk specific gravity, pore size and pore distributiion were measured in order to collaborate with sintering phenomena. The results obtained are as follows: (1) Apparent porosity isgradually decreased with rising the sintering temperature to 1, 25$0^{\circ}C$. (2) The binder-added specimen showed the lowest value in porosity. (3) The optimum sintering temperature of specimens was considered to be 1, 25$0^{\circ}C$. (4) The wider differences between pore volumes of specimens could be obtained by method of mercurypenetration porosimeter than by the conventional method for porosity.

  • PDF

The Fabrication and Characteristics of Porous Alumina Ceramics by Pressureless Powder Packing Forming Method : I . Alumina (무가압분말충전성형법에 의한 다공성 세라믹스의 제조 및 특성 : I. 알루미나)

  • 박정현;황명익;김동희;최환욱;김용남
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.6
    • /
    • pp.662-670
    • /
    • 1999
  • Porous alumina was fabricated from pressureless powder packing forming method using powders granulated by spray drying. It was investigated the pore size distribution of fabricated porous alumina. The results of microstructural observation showed that intraganular pore size and intragranular pore size. At 1700$^{\circ}C$ there were no intragranular pores but it showed homogeneous distribution of intergranular pore size. The bending strength and shrinkage increased as porosity decreased. In case of thermal shock resistance sudden decrease of bending strength to $\Delta$T was not shown because intergranular large pore prevented sudden crack propagation.

  • PDF