• Title/Summary/Keyword: Packing phase

Search Result 95, Processing Time 0.026 seconds

Low Temperature Processing and Properties of Porous Frit-Bonded SiC Ceramics (프릿을 이용한 다공질 SiC 세라믹스의 저온 제조 공정 및 물성)

  • Chae, Su-Ho;Kim, Young-Wook;Song, In-Hyuck;Kim, Hai-Doo;Bae, Ji-Soo;Na, Sang-Moon;Kim, Seung-Il
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.5
    • /
    • pp.488-492
    • /
    • 2009
  • Porous frit-bonded SiC ceramics were successfully prepared at a temperature as low as $800^{\circ}C$ from SiC, frit, and microbeads (glass or polymer). The effects of SiC starting particle size and microbead addition on microstructure, porosity, and flexural strength were investigated. The addition of hollow glass microbead improved the strength of frit-bonded SiC ceramics without the loss of porosity by acting additional binder phase between SiC grains. The 65 ${\mu}m$-sized SiC resulted in lower porosity and higher strength than 50 ${\mu}m$-sized SiC because of higher packing density. Typical flexural strengths of frit-bonded SiC were 23 MPa at 46% porosity and 19 MPa at 49% porosity.

Preparation of Affinity Column Based on ZR4+ Ion forPhosphoproteins Isolation

  • Lee, Seon-Mi;Bae, In-Ae;Park, Jung-Hyen;Kim, Tae-Dong;Choi, Seong-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.3
    • /
    • pp.279-285
    • /
    • 2009
  • This paper has described about preparation of $Zr^{4+}$ affinity column based on the poly(styrene-co- gly-cidyl methacrylate) prepared by emulsion polymerization of styrene and glycidyl methacrylate in order to isolate phosphopeptide. The $Zr^{4+}$ ions were introduced after the phophonation of an epoxy group on polymeric microspheres. The successful preparation of $Zr^{4+}$-immobilized polymeric microsphere stationary phase was confirmed through Fourier transform infrared spectra, optical microscopy, scanning electron microscopy, X-ray photoelectron spectra and inductively coupled plasma-atomic emission spectrometer. The separation efficiency for $Zr^{4+}$ affinity column prepared by slurry packing was tested to phosphonated casein and dephosphonated casein. The resolution time (min) of the phosphonated casein was higher than that of dephosphated casein for $Zr^{4+}$ affinity polymeric microsphere by liquid chromatography. This $Zr^{4+}$ affinity column can be used for isolation of phosphonated casein from casein using liquid chromatography.

Optimization of Curing Pressure for Automatic Pressure Gelation Molding Process of Ultra High Voltage Insulating Spacers (초고압 절연 스페이서의 자동가압 겔화 성형 공정을 위한 경화 보압의 최적화 )

  • Chanyong Lee;Hangoo Cho;Jaehyeong Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.56-62
    • /
    • 2024
  • By introducing curing kinetics and chemo-rheology for the epoxy resin formulation for ultra-high voltage gas insulated switchgear (GIS) Insulating Spacers, a study was conducted to simulate the curing behavior, flow and warpage analysis for optimization of the molding process in automatic pressure gelation. The curing rate equation and chemo-rheology equation were set as fixed values for various factors and other physical property values, and the APG molding process conditions were entered into the Moldflow software to perform optimization numerical simulations of the three-phase insulating spacer. Changes in curing shrinkage according to pack pressure were observed under the optimized process conditions. As a result, it was confirmed that the residence time in the solid state was shortened due to the lowest curing reaction when the curing holding pressure was 3 bar, and the occurrence of deformation due to internal residual stress was minimized.

Characteristics of Bio-filter Support Media for the Odor Control (악취가스 제어를 위한 Bio-filter 담체의 특성 비교)

  • Lee, Hye-Sung;Chu, Duk-Sung;Jung, Joon-Oh
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.1
    • /
    • pp.101-107
    • /
    • 2008
  • Bio-filtration utilizes microorganisms fixed to a porous medium to metabolize pollutants present in an air stream. The microorganisms grow in a bio-film on the surface of a medium or are suspended in the water phase surrounding the medium particles. Therefore, bio-filter support media play one of the most important key roles in bio-filtration of gas phase pollutants. To characterize and select the appropriate support media, gas adsorption capacity and microorganism immobilization were investigated in lab-scale experiments for the selected target support media which were compost I (compost from lab-scale process), compost II (compost from municipal facility), bark, wood chip, orchid stone and vermiculite. As odor materials, ammonia and trimethylamine were utilized. From the result of experiments, bark was superior to any other support media tested in adsorption capacity as much as 12.5 mg ammonia per 1 g bark. In trimethylamine adsorption, bark and wood chip showed a remarkable results of 21.1 and 14.1 mg/g respectively. On the other hand, microorganism fixation test determined by the count of nitrogen oxidizing microbes population, the compost II and wood chips showed the best results. Considering the characteristics of materials and the operating condition of the bio-filter, bark, wood chip, and compost II are applicable to the support media of bio-filter when they are appropriately blended on the basis of studying the media pH, packing porosity and moisture contents.

Effect of pre-annealing conditions on mechanical and superconducting properties of Bi-2223/Ag tapes (초전도 선재의 전 열처리에 따른 기계적 및 초전도 특성에 미치는 효과)

  • 양주생;하동우;이동훈;최정규;황선역;하홍수;오상수;권영길;김명호
    • Progress in Superconductivity
    • /
    • v.5 no.2
    • /
    • pp.124-127
    • /
    • 2004
  • Many of research efforts have been focused on the improvement of critical current density (Jc) of silver-sheathed Bi-2223 tapes far practical applications. In this study, the transformation of Bi-2212 phase was investigated, which was transformed to orthorhombic from tetragonal through pre-annealing during powder packing and drawing process. The relationship between hardness of Bi-2212 orthorhombic phase and workability of Bi-2223/Ag tape was investigated. Bi-2223 superconducting wires with 55 filaments were fabricated by stacking and drawing process with different heat-treatment histories. Before rolling process, round wires were pre-annealing at 76$0^{\circ}C$ and in a low oxygen partial pressure. We confirmed that pre-annealing step was to transform to Bi-2212 orthorhombic structure from Bi-2212 tetragonal structure and to reduce the formation of second phases. However the breakages were created at Ag-alloy clad during rolling for pre-annealed Bi-22231Ag tapes. Several pre-annealing scenarios were introduced to reduce the breakages during rolling process. Microstructure and critical current density of pre-annealed Bi-2223 superconducting tapes were investigated. We could achieve proper pre-annealing conditions for Ag-alloy clad Bi-2223 superconducting tapes.

  • PDF

Removal Characteristics of NOx Using a Mixed Soil-Biofilter (토양 혼합여재를 이용한 질소산화물 제거특성)

  • Cho, Ki-Chul;Sin, Eun-Sang;Hwang, Gyeong-Cheol;Cho, Il-Hyoung;Lee, Nae-Hyun;Yeo, Hyun-Gu
    • Journal of environmental and Sanitary engineering
    • /
    • v.21 no.3 s.61
    • /
    • pp.15-26
    • /
    • 2006
  • As traffic in city-centre around the world continues to increase, so levels of atmospheric pollutants continue to rise. High concentrations of NOx can have negative effects on human health, and we must find new ways to reduce their levels in the air we breathe. Nitrogen oxide gas (NOx), consisting of nitrogen monoxide (NO) and nitrogen dioxide $(NO_2)$ produced using $O_3$ oxidation, at a low concentration corresponding to that on roads as a result of exhaust from automobiles, was carried out to evaluate the removal characteristics of NOx through a laboratory-scale biofilter packed with soil as a packing material. A mixture media (yellow soil (30%): soil (40%): compost (10%): a used briquet (20%)) was applied. After about 1day of operation, the removal efficiency for $NO_2$ in all experiments with a constant condition ($25^{\circ}C$ and water humidity (60%)) was over 98%. The retention times of the section between phase I and phase II for formation and reduction of $NO_3$ NO and $NO_2$ on the initial $NO_3$ concentration was 50min $(O_3:195\;ppb),\;55min\;(O_3:925\;ppb),\;65min\;(O_3:1743\;ppb),\;70min\;(O_3:2616\;ppb),\;75min\;(O_3:3500\;ppb)$, respectively The soil biofilter system is a unique technology that purifies urban air by utilizing the natural processes that take place in the soil. Although some of the processes are quite complex, they can broadly be summarized as adsorption onto soil particles, dissolution into soil pore water, and biochemical.

Effect of Sintering Aid and Glass-Frit on the Densification and Resistivity of Silver Paste (실버 페이스트의 치밀화 및 비저항에 미치는 소결조제와 프릿의 영향)

  • Lee, Jong-Kook;Park, Sung-Hyun;Yang, Gwon-Seung
    • Korean Journal of Materials Research
    • /
    • v.18 no.5
    • /
    • pp.283-288
    • /
    • 2008
  • The effect of sintering aids and glass-frit on the densification and resistivity of silver paste was investigated in an effort to enhance the sintered density and electrical conductivity of the silver electrode. To prepare Pb-free silver paste for use at low sintering temperatures, two commercial silver powders ($0.8\;{\mu}m$ and $1.6\;{\mu}m$ in size) and 5wt.% lab-synthesized nanoparticles (30-50 nm in size) as a sintering aids were mixed with 3 wt.% or 6 wt.% of glass frit ($Bi_2O_3$-based) using a solvent and three roll mills. Thick films from the silver paste were prepared by means of screen printing on an alumina substrate followed by sintering at $450^{\circ}C$ to $550^{\circ}C$ for 15 min. Silver thick films from the paste with bimodal particles showed a high packing density, high densification during sintering and low resistivity compared to films created using monomodal particles. Silver nanoparticles as a sintering aid enhanced the densification of commercial silver powder at a low sintering temperature and induced low resistivity in the silver thick film. The glass frit also enhanced the densification of the films through liquid phase sintering; however, the optimum content of glass frit is necessary to ensure that a dense microstructure and low resistivity are obtained, as excessive glass-frit can provoke low conductivity due to the interconnection of the glass phase with the high resistivity between the silver particles.

Growth of ${\gamma}$-Al2O3 (111) on an ultra-thin interfacial Al2O3 layer/NiAl(110)

  • Lee, M.B.;Frederick, B.G;Richardson, N.V.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.2 no.2
    • /
    • pp.63-77
    • /
    • 1998
  • The oxidation of NiAl(110) was investigated in the temperature regime between 300K and 1300 K using LEED (low energy electron diffraction), TPD (temperature programmed desorption) and HREELS (high resolution electron energy loss spectroscopy). The adsorption of N2O and O2 up to reconstructions. Stepwise annealing of the oxygen-saturated sample from 600 K to 1300K in UHV (ultra-high vacuum,) results in firstly the onset of randomly oriented then finally fairly well-ordered. 5 ${\AA}$ Al2O3 film with quasi-hexagonal periodicity. Ordered thicker oxide films of 18-30 ${\AA}$ seem to be grown on this interfacial oxide layer by direct oxidation of sample at elevated temperature between 1150 and 1300 K because of the LEED pattern consisting of new broad hexagonal spots and the previous 5 ${\AA}$ spots. Although the periodicity of surface oxygen arrays shows no significant change from an hexagonal close-packing, the O-O distance changes from ∼3.0 ${\AA}$ film to ∼2.9 ${\AA}$ for thicker oxides. with the appearance of Auger parameter, for the 5${\AA}$ film can be described better as an interfacial oxide layer. The observation of three symmetric phonon peaks can be also a supporting evidence for this phase assignment since thicker oxide films on the Same Ni2Al3(110) show somewhat different phonon structure much closer to that of the ${\gamma}$-Al2O3. The adsorption/desorption of methanol further proves the preparation of less-defective and/or oxygen-terminated Al2O3 films showing ordered phase transitions with the change of oxide thickness between 5 ${\AA}$ to 30 ${\AA}$.

  • PDF

Order-disorder structural tailoring and its effects on the chemical stability of (Gd, Nd)2(Zr, Ce)2O7 pyrochlore ceramic for nuclear waste forms

  • Wang, Yan;Wang, Jin;Zhang, Xue;Li, Nan;Wang, Junxia;Liang, Xiaofeng
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2427-2434
    • /
    • 2022
  • Series of unequal quantity Nd/Ce co-doped ceramic nuclear waste forms, (Gd, Nd)2(Zr, Ce)2O7, were prepared to tailor its ordered pyrochlore or disordered fluorite structure. The phase transition, microtopography, and elemental composition of the ceramic samples were systematically investigated, especially the effect of order-disorder structure on the chemical stability. It was confirmed that unequal quantity of Nd/Ce could synchronously replace the Gd/Zr-sites of Gd2Zr2O7. And the phase transition of order-disorder structure could be successfully tailored by regulating the average cationic radius ratio of (Gd, Nd)2(Zr, Ce)2O7 series. The elements of Gd, Nd, Zr, and Ce are uniformly distributed in the ordered or disordered structures. The MCC-1 leaching results showed that (Gd, Nd)2(Zr, Ce)2O7 pyrochlore ceramic nuclear waste forms had excellent chemical stability, whose elements' normalized leaching rates were as low as 10-4-10-7 g·m-2·d-1 after 7 days. In particular, the chemical stability of disordered structure was superior to that of ordered structure. It was proposed that the force constant and the closest packing were changed with the structure transformation resulting the chemical stability difference.

Simulation-based Design Validation and Alternatives Analysis of Release Process of Logistics Automation Warehouse (시뮬레이션을 활용한 물류 자동화 창고의 출고 프로세스 설계 검증 및 대안 분석)

  • Moon-Gi Jeong;JongPil Kim;JinSung Park;Kyung-Min Seo
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.3
    • /
    • pp.75-91
    • /
    • 2023
  • As the business-to-customer (B2C) online market expands after the COVID-19 pandemic, the logistics industry has been constructing automated warehouses to handle multi-product, low-volume logistics. When constructing a logistics automation warehouse, it is crucial to validate that the facility's performance and operational logic are designed to meet the required throughput of the automated warehouse from the system design phase. This study proposes simulation-based validation and optimal alternatives for an H logistics automation warehouse in Iksan, Jeollabuk-do. Firstly, we focused on the box supply and packing processes, which are related to the release process, among the entire logistic processes. Then, we analyzed the potential bottlenecks in the target process and designed and implemented a discrete-event simulation model based on the analysis results. The simulation experiments showed that the facility parameters and operational logic identified in the system design phase did not satisfy the performance requirements of the entire automated warehouse. Additional experiments were conducted to suggest alternatives to meet the system performance requirements by changing the facility parameters and operational logic. We expect that the proposed study will be utilized in the future, not only in the system design phase but also in the system construction phase, for verification purposes to ensure that the construction proceeds according to the design.