• Title/Summary/Keyword: Packets loss rate

Search Result 91, Processing Time 0.026 seconds

QoS Based Enhanced Collaboration System Using JMF in MDO

  • Kim Jong-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2004.06a
    • /
    • pp.281-284
    • /
    • 2004
  • This paper presents the design and implementation of a QoS based enhanced collaboration system in MDO. This is an efficient distributed communication tool between designers. It supports text communication, audio/video communication, file transfer and XML data sending/receiving. Specially, this system supports a dynamic QoS self-adaptation by using the improved direct adjustment algorithm (DAA+). The original direct adjustment algorithm adjusts the transmission rate according to the congestion level of the network, based on the end to end real time transport protocol (RTP), and controls the transmission rate by using the information of loss ratio in real time transport control protocol (RTCP). But the direct adjustment algorithm does not consider when the RTCP packets are lost. We suggest an improved direct adjustment algorithm to solve this problem. We apply our improved direct adjustment algorithm to our of QoS (Quality of Service) [1] based collaboration system and show the improved performance of transmission rate and loss ratio.

  • PDF

Implementation and evaluation of lost packet recovery using low-bitrate redundant audio data (저비트율 잉여오디오 정보를 이용한 손실 패킷 복구 방법의 구현 및 성능 평가)

  • 박준석;고대식
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.7
    • /
    • pp.1-5
    • /
    • 1998
  • In this paper, recovery method with high-bitrate and low-bitrate coder was implemented in order to recover consecutive packet loss over the Internet. LPC was used as redundant audio data for recover of lost packets and RTP parcket format was modified for accommodation of redundant data. In measuring results using random packet loss rate with three redundant datra in every packet, it has shown that recovery rate was 80% in los rate of 50%. Since the processing delay for recovery of the lost packet was 200ms, this recovery method can be applied to real-time Internet sevice such as Internet phone.

  • PDF

Cross-layer Design of Packet Scheduling for Real-Time Multimedia Streaming (실시간 멀티미디어 스트리밍을 위한 계층 통합 패킷 스케줄링 기법)

  • Hong, Sung-Woo;Won, You-Jip
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11B
    • /
    • pp.1151-1168
    • /
    • 2009
  • Improving packet loss does not necessarily coincide with the improvement in user perceivable QoS because each frame carries different degree of importance. We propose Significance-aware packet scheduling (SAPS) to maximize user perceivable QoS. SAPS carries out two fundamental issues of packet scheduling: "What to transmit" and "When to transmit?" To adapt to the available bandwidth, it is necessarily to transmit the subset of the data packets if the entire set of packets can not be transmitted. "Packet Significance" quantifies the importance of the frame by elaborately incorporating frames' dependency. Greedy approach is used in selecting packets and transmission schedule is determined based on the Packet Significance. The proposed scheme is tested using publicly available MPEG-4 video clips. Decoding engine is embedded in the simulation software and user perceivable QoS is exposeed in termstermiSNR. Throughout the simulation based experiment, the performance of the proposed scheme is compared two other schemes: Size-based packet scheduling and Bit-rate based best effort packet scheduling. SAPS successfully incorporates the semantics of a packet and improves user perceivable QoS significantly. It successfully provides unequal protection to more important packets.

A Packet Dropping Algorithm based on Queue Management for Congestion Avoidance (폭주회피를 위한 큐 관리 기반의 패킷 탈락 알고리즘)

  • 이팔진;양진영
    • Journal of Internet Computing and Services
    • /
    • v.3 no.6
    • /
    • pp.43-51
    • /
    • 2002
  • In this paper, we study the new packet dropping scheme using an active queue management algorithm. Active queue management mechanisms differ from the traditional drop tail mechanism in that in a drop tail queue packets are dropped when the buffer overflows, while in active queue management mechanisms, packets may be dropped early before congestion occurs, However, it still incurs high packet loss ratio when the buffer size is not large enough, By detecting congestion and notifying only a randomly selected fraction of connection, RED causes to the global synchronization and fairness problem. And also, it is the biggest problem that the network traffic characteristics need to be known in order to find the optimum average queue length, We propose a new efficient packet dropping method based on the active queue management for congestion control. The proposed scheme uses the per-flow rate and fair share rate estimates. To this end, we present the estimation algorithm to compute the flow arrival rate and the link fair rate, We shows the proposed method improves the network performance because the traffic generated can not cause rapid fluctuations in queue lengths which result in packet loss

  • PDF

A Overlay Transmission Method of End-to-end Host for Transmission Rate Improvement (전송률 향상을 위한 종단간 호스트의 오버레이 전송 기법)

  • Koo, Myung-Mo;Jeong, Won-Chang;Kim, Sang-Bok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.4 s.36
    • /
    • pp.275-283
    • /
    • 2005
  • In this paper, we propose an overlay transmission method of end-to-end host to solve decrease in transmission rate caused by congestion in the application using multicast. In this proposed method, we've selected an overlay end-to-end host (OEH) for overcast transmission for each node, and the OEH can transmit duplicative packets. When the loss rate is more than the overcast threshold, the receivers of node in congestion are dropping from current layers and the OEH of lower nodes can request overcast transmission to OEH of non-congestion nodes for receiveing packets. In simulation results, it was known that the proposed method improves transmission rates over those of existing methods.

  • PDF

Deep Learning based Loss Recovery Mechanism for Video Streaming over Mobile Information-Centric Network

  • Han, Longzhe;Maksymyuk, Taras;Bao, Xuecai;Zhao, Jia;Liu, Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4572-4586
    • /
    • 2019
  • Mobile Edge Computing (MEC) and Information-Centric Networking (ICN) are essential network architectures for the future Internet. The advantages of MEC and ICN such as computation and storage capabilities at the edge of the network, in-network caching and named-data communication paradigm can greatly improve the quality of video streaming applications. However, the packet loss in wireless network environments still affects the video streaming performance and the existing loss recovery approaches in ICN does not exploit the capabilities of MEC. This paper proposes a Deep Learning based Loss Recovery Mechanism (DL-LRM) for video streaming over MEC based ICN. Different with existing approaches, the Forward Error Correction (FEC) packets are generated at the edge of the network, which dramatically reduces the workload of core network and backhaul. By monitoring network states, our proposed DL-LRM controls the FEC request rate by deep reinforcement learning algorithm. Considering the characteristics of video streaming and MEC, in this paper we develop content caching detection and fast retransmission algorithm to effectively utilize resources of MEC. Experimental results demonstrate that the DL-LRM is able to adaptively adjust and control the FEC request rate and achieve better video quality than the existing approaches.

A Comparative Estimation of Performance of Average Loss Interval Calculation Method in TCP-Friendly Congestion Control Protocol (TFRC 프로토콜의 평균 손실 구간 계산방식의 비교평가)

  • Lee, Sang-Chul;Jang, Ju-Wook
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.5
    • /
    • pp.495-500
    • /
    • 2002
  • We propose a new estimation method for rate adjustment in the face of a packet loss in the TFRC protocol, a TCP-Friendly congestion control protocol for UDP flows. Previous methods respond in a sensitive way to a single packet loss, resulting in oscillatory transmission behavior. This is an undesirable for multimedia services demanding constant bandwidth. The proposed TFRC provides more smooth and fair (against TCP flows) transmission through collective response based on multiple packets loss events. We show our "Exponential smoothing method" performs better than known "Weight smoothing method" in terms of smoothness and fairness.

A Methodology for Performance Testing of Ethernet Switch (Layer 3 이더넷 스위치 성능 시험 방법론 연구)

  • 김용선
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.441-444
    • /
    • 2000
  • This paper covers the performance testing for layer 3 Ethernet switch based on various methodologies by which we can measure essential metrics such as throughput, latency, frame loss rate, and back to back frames. In the first place, layer 2 and layer 3 switch evolution is introduced followed by description of IP packet switching in layer 3 switch. And then, the above test metrics and test methodologies are illustrated as well. At last, we conduct the performance testing for layer 3 switch in case of transmitting packets of 64, 128, 256, 512, 1024, 1280, and 1518 byte size and analyze then results.

  • PDF

Verification of failover effects from distributed control system communication networks in digitalized nuclear power plants

  • Min, Moon-Gi;Lee, Jae-Ki;Lee, Kwang-Hyun;Lee, Dongil;Lim, Hee-Taek
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.989-995
    • /
    • 2017
  • Distributed Control System (DCS) communication networks, which use Fast Ethernet with redundant networks for the transmission of information, have been installed in digitalized nuclear power plants. Normally, failover tests are performed to verify the reliability of redundant networks during design and manufacturing phases; however, systematic integrity tests of DCS networks cannot be fully performed during these phases because all relevant equipment is not installed completely during these two phases. In additions, practical verification tests are insufficient, and there is a need to test the actual failover function of DCS redundant networks in the target environment. The purpose of this study is to verify that the failover functions works correctly in certain abnormal conditions during installation and commissioning phase and identify the influence of network failover on the entire DCS. To quantify the effects of network failover in the DCS, the packets (Protocol Data Units) must be collected and resource usage of the system has to be monitored and analyzed. This study introduces the use of a new methodology for verification of DCS network failover during the installation and commissioning phases. This study is expected to provide insight into verification methodology and the failover effects from DCS redundant networks. It also provides test results of network performance from DCS network failover in digitalized domestic nuclear power plants (NPPs).

Comparison about TCP and Snoop protocol on wired and wireless integrated network (유무선 혼합망에서 TCP와 Snoop 프로토콜 비교에 관한 연구)

  • Kim, Chang Hee
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.2
    • /
    • pp.141-156
    • /
    • 2009
  • As the TCP is the protocol designed for the wired network that packet loss probability is very low, because TCP transmitter takes it for granted that the packet loss by the wireless network characteristics is occurred by the network congestion and lowers the transmitter's transmission rate, the performance is degraded. The Snoop Protocol was designed for the wired network by putting the Snoop agent module on the BS(Base Station) that connect the wire network to the wireless network to complement the TCP problem. The Snoop agent cash the packets being transferred to the wireless terminal and recover the loss by resending locally for the error occurred in the wireless link. The Snoop agent blocks the unnecessary congestion control by preventing the dupack (duplicate acknowledgement)for the retransmitted packet from sending to the sender and hiding the loss in the wireless link from the sender. We evaluated the performance in the wired/wireless network and in various TCP versions using the TCP designed for the wired network and the Snoop designed for the wireless network and evaluated the performance of the wired/wireless hybrid network in the wireless link environment that the continuous packet loss occur.