• Title/Summary/Keyword: Packet-base

Search Result 207, Processing Time 0.022 seconds

Packet Scheduling for Cellular Relay Networks by Considering Relay Selection, Channel Quality, and Packet Utility

  • Zhou, Rui;Nguyen, Hoang Nam;Sasase, Iwao
    • Journal of Communications and Networks
    • /
    • v.11 no.5
    • /
    • pp.464-472
    • /
    • 2009
  • In this paper, we propose a packet scheduling algorithm for cellular relay networks by considering relay selection, variation of channel quality, and packet delay. In the networks, mobile users are equipped with not only cellular but also user relaying radio interfaces, where base station exploits adaptive high speed downlink channel. Our proposed algorithm selects a user with good cellular channel condition as a relay station for other users with bad cellular channel condition but can get access to relay link with good quality. This can achieve flexible packet scheduling by adjusting transmission rates of cellular link. Packets are scheduled for transmission depending on scheduling indexes which are calculated based on user's achieved transmission rate, packet utility, and proportional fairness of their throughput. The performance results obtained by using computer simulation show that the proposed scheduling algorithm is able to achieve high network capacity, low packet loss, and good fairness in terms of received throughput of mobile users.

Modified BLUE Packet Buffer for Base-Stations in Mobile IP-based Networks

  • Hur, Kyeong
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.5
    • /
    • pp.530-538
    • /
    • 2011
  • Performance of TCP can be severely degraded in Mobile IP-based wireless networks where packet losses not related to network congestion occur frequently during inter-subnetwork handoffs by user mobility. To solve such a problem in the networks using Mobile IP, the packet buffering method at a base station(BS) recovers those packets dropped during handoff by forwarding the buffered packets at the old BS to the mobile users. But, when the mobile user moves to a congested BS in a new foreign subnetwork, those buffered packets forwarded by the old BS are dropped and TCP transmission performance of a mobile user degrades severely. In this paper, we propose a Modified BLUE(MBLUE) buffer required at a BS to increase TCP throughput in Mobile IP-based networks. When a queue length exceed a threshold and congestion grows, MBLUE increases its packet drop probability. But, when a TCP connection is added at new BS by a handoff, the old BS marks the buffered packets. And new BS receives the marked packets without dropping. Simulation results show that MBLUE buffer reduces congestion during handoffs and increases TCP throughputs.

Analysis of layered bases-foundations models under seismic actions

  • Aghalovyan, L.A.;Sahakyan, A.V.;Aghalovyan, M.L.
    • Smart Structures and Systems
    • /
    • v.2 no.4
    • /
    • pp.295-304
    • /
    • 2006
  • The paper considers the dynamic behaviour of the two-layered and multi-layered plate packets under dynamic (seismic) loading. These models correspond to the base-foundation packet structures. The analysis of the various models, including the models of contact between the layers, is derived on the base of the precise solutions of elasticity theory equations. It is shown that the application of the seismoisolator or, in general, less rigid materials between the base and the foundation brings to reduction of the natural frequencies of free vibrations of the packet base-foundation, as well as to the significant reduction of the negative seismic effect on the structures.

Simulation and Analysis of Base Station Buffer in UMTS Systems (UMTS 시스템에서 기지국 버퍼에 대한 실험 및 분석)

  • Kim, Nam-Gi;Park, In-Yong;Jeong, Hye-Yeong;Yun, Hyeon-Su
    • The KIPS Transactions:PartA
    • /
    • v.9A no.3
    • /
    • pp.317-326
    • /
    • 2002
  • The mobile telecommunication system has been growing exponentially after 1990s due to the high population in a city and the growth of mobile user. In this time, the current mobile system mainly concentrates on the voice communication. However, in the next generation, mobile users want to get very diverse services via mobile terminal such as the Internet access, web access, multimedia communication, and etc. For this reason, the next generation system, such as the UMTS system, has to support the packet data service and it will play the major role in the system. In different from the voice service, the packet data service should store packet data in a buffer at base station before it forwards. Consequently, the performance closely related to the buffer management and its operation. However, until now, there are rare study on the buffer behavior and management. In this paper, we will observe the buffer behavior in the UMTS systems by using simulation and analyze the results. For this research, we generate packet data traffics and model the UMTS system for a simulation. Then we analyze the buffer state by a simulation and calculate the buffer overflow probability by mathematical methods.

A Study on MAC Protocol for Packet Data Services in Next-Generation Wireless Networks (차세대 무선망에서 패킷 데이터 서비스를 위한 MAC 프로토콜 연구)

  • 임인택
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.6
    • /
    • pp.1115-1120
    • /
    • 2004
  • In this paper, a CSSMA/AI MAC protocol for data services in packet CDMA network is presented. The main features of this protocol are the code status sensing and code reservation for reducing the packet collision. The base station broadcasts the code status on a frame-by-frame basis just before the beginning of each preamble transmission, and the mobile station transmits a preamble for reserving a randomly selected code based on the received code status. After having transmitted the preamble, the mobile station listens to the downlink of the selected code and waits for the base station reply. If this reply indicates that the code has been correctly acquired, it continues the packet transmission for the rest of the frame. If there are other packets waiting for transmission, the base station broadcasts the status of the code as reserved, and the mobile station transmits a packet on a reserved code for the successive frames.

A Design of Voice Over Sensor Network (VoSN) Base Station with Multi-Channel Support (다중 채널을 지원하는 Voice over Sensor Network(VoSN) Base Station 설계)

  • Lee, Hoon Jae;Lee, Jae Hyoung;Kang, Min Soo;Cho, Sung Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.1
    • /
    • pp.90-96
    • /
    • 2014
  • IEEE802.15.4 that is a standard for sensor networks is mainly used the wireless personal area networks such as ZigBee networks and it features low-power, low-speed data communication. However, recently research for interworking sensor network based voice communication and Session Initiation Protocol (SIP) for long-range, multi-user support has been actively conducted. In this paper, we designed a integrated base station based existing systems for interworking sensor networks based voice communication and SIP. We measured number of packet and delay according to increase the number of users to evaluate the performance of designed Base Station.

Improving the Performance of TCP over Wired-Wireless Networks Using the Received Signal Strengths of Mobile Host (이동호스트의 수신신호를 이용한 유무선 혼합망에서의 TCP 성능 향상)

  • Kim, Jin-Hee;Kwon, Kyun-Hee
    • The KIPS Transactions:PartC
    • /
    • v.13C no.5 s.108
    • /
    • pp.635-640
    • /
    • 2006
  • The Snoop in the BS (Base Station) performs a local retransmission over wired-wireless networks to recover packet loss quickly. However, when the MH (Mobile Host) leaves the reception range of the signal, the local retransmission causes performance to degrade. In this paper, we minimize the packet loss and local retransmission caused by the unreachability from BS to MH to improve network performance. To do this, we suggest to add RSS(Received Signal Strengths) flag bit in ACK packet of MH. By using this flag bit, the BS decides whether it retransmits or not to minimize packet loss. The result of the simulation by ns-2 shows a big improvement of performance in the networks.

Multiplexing scheme for forward signaling channels in wireless cellular networks (이동통신망의 전향 신호 채널을 위한 다중화 방식)

  • 최천원
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.3
    • /
    • pp.65-75
    • /
    • 1998
  • We consider connection-oriented wireless cellular networks such as the second generation wireless cellular networks and wirelss ATM networks. In these networks, a separate forward signaling channel is provided for the transmission of paging and channel allocation packets. When a call destined to a user is requested, all the base stations in the user's current location area broadcast the corresponding paging packet across forward signaling channels. By slot mode operation and paging group allocation for fusers in a location area, we can reduce relative power consumption level at battery-operated terminals. However, a sthe number of paging groups is increased for lowering relative power consumption level, a paging packet experiences higher delay to access the forward signaling channel. For the pre-negotiated quality-of-service level, paging packet delay level must be limited. In this paper, we consider static and dynamic multiplexing schemes for paging packets, and develop an analytical method for calculating paging packet delay and relative power consumption levels. Using this analytial method, we investigate the effect of network parameters on the paging packet delay and relative power consumption levels.

  • PDF

Access Control Protocol for Packet Transmission in CDMA-based Slotted (CDMA기반 슬롯 ALOHA 시스템에서 패킷 전송을 위한 접속 제어 프로토콜)

  • 임인택
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.615-618
    • /
    • 2002
  • This Paper Proposes an access control algorithm for guaranteeing fair packet transmissions in CDMA-based slotted ALOHA systems. In the proposed algorithm, the base station calculates the packet transmission and retransmission probabilities based on the offered loads and then broadcasts these probabilities to all mobile stations. Mobile stations, which have a packet to transmit, attempt to transmit a packet with the received probabilities. Simulation results show that the proposed algorithm can offer better system throughput and average delay than the conventional algorithm. Results also show that the proposed algorithm ran guarantee a good fairness among all mobile stations regardless of the offered loads.

  • PDF

TCP Performance Enhancement by Implicit Priority Forwarding (IPF) Packet Buffering Scheme for Mobile IP Based Networks

  • Roh, Young-Sup;Hur, Kye-Ong;Eom, Doo-Seop;Lee, Yeon-Woo;Tchah, Kyun-Hyon
    • Journal of Communications and Networks
    • /
    • v.7 no.3
    • /
    • pp.367-376
    • /
    • 2005
  • The smooth handoff supported by the route optimization extension to the mobile IP standard protocol should support a packet buffering mechanism at the base station (BS), in order to reduce the degradation in TCP performance caused by packet losses within mobile network environments. The purpose of packet buffering at the BS is to recover the packets dropped during intersubnetwork handoff by forwarding the packets buffered at the previous BS to the new BS. However, when the mobile host moves to a congested BS within a new foreign subnetwork, the buffered packets forwarded by the previous BS are likely to be dropped. This subsequently causes global synchronization to occur, resulting in the degradation of the wireless link in the congested BS, due to the increased congestion caused by the forwarded burst packets. Thus, in this paper, we propose an implicit priority forwarding (IPF) packet buffering scheme as a solution to this problem within mobile IP based networks. In the proposed IPF method, the previous BS implicitly marks the priority packets being used for inter-subnetwork handoff. Moreover, the proposed modified random early detection (M-RED) buffer at the new congested BS guarantees some degree of reliability to the priority packets. The simulation results show that the proposed IPF packet buffering scheme increases the wireless link utilization and, thus, it enhances the TCP throughput performance in the context of various intersubnetwork handoff cases.