• Title/Summary/Keyword: Packet forwarding

Search Result 217, Processing Time 0.031 seconds

Modified BLUE Packet Buffer for Base-Stations in Mobile IP-based Networks

  • Hur, Kyeong
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.5
    • /
    • pp.530-538
    • /
    • 2011
  • Performance of TCP can be severely degraded in Mobile IP-based wireless networks where packet losses not related to network congestion occur frequently during inter-subnetwork handoffs by user mobility. To solve such a problem in the networks using Mobile IP, the packet buffering method at a base station(BS) recovers those packets dropped during handoff by forwarding the buffered packets at the old BS to the mobile users. But, when the mobile user moves to a congested BS in a new foreign subnetwork, those buffered packets forwarded by the old BS are dropped and TCP transmission performance of a mobile user degrades severely. In this paper, we propose a Modified BLUE(MBLUE) buffer required at a BS to increase TCP throughput in Mobile IP-based networks. When a queue length exceed a threshold and congestion grows, MBLUE increases its packet drop probability. But, when a TCP connection is added at new BS by a handoff, the old BS marks the buffered packets. And new BS receives the marked packets without dropping. Simulation results show that MBLUE buffer reduces congestion during handoffs and increases TCP throughputs.

Performance Analysis of Random Early Dropping Effect at an Edge Router for TCP Fairness of DiffServ Assured Service

  • Hur Kyeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.4B
    • /
    • pp.255-269
    • /
    • 2006
  • The differentiated services(DiffServ) architecture provides packet level service differentiation through the simple and predefined Per-Hop Behaviors(PHBs). The Assured Forwarding(AF) PHB proposed as the assured services uses the RED-in/out(RIO) approach to ensusre the expected capacity specified by the service profile. However, the AF PHB fails to give good QoS and fairness to the TCP flows. This is because OUT(out- of-profile) packet droppings at the RIO buffer are unfair and sporadic during only network congestion while the TCP's congestion control algorithm works with a different round trip time(RTT). In this paper, we propose an Adaptive Regulating Drop(ARD) marker, as a novel dropping strategy at the ingressive edge router, to improve TCP fairness in assured services without a decrease in the link utilization. To drop packets pertinently, the ARD marker adaptively changes a Temporary Permitted Rate(TPR) for aggregate TCP flows. To reduce the excessive use of greedy TCP flows by notifying droppings of their IN packets constantly to them without a decrease in the link utilization, according to the TPR, the ARD marker performs random early fair remarking and dropping of their excessive IN packets at the aggregate flow level. Thus, the throughput of a TCP flow no more depends on only the sporadic and unfair OUT packet droppings at the RIO buffer in the core router. Then, the ARD marker regulates the packet transmission rate of each TCP flow to the contract rate by increasing TCP fairness, without a decrease in the link utilization.

Topology-aware Packet Size and Forward Rate for Energy Efficiency and Reliability in Dynamic Wireless Body Area Networks (동적 무선 인체 통신망의 에너지 효율과 신뢰성을 위한 토폴로지 인식 기반 패킷 크기 및 포워딩 비율 결정 방법)

  • Nguyen-Xuan, Sam;Kim, Dongwan;An, Sunshin
    • Journal of Internet Computing and Services
    • /
    • v.15 no.2
    • /
    • pp.9-18
    • /
    • 2014
  • The sensors attached on/in a person are moved since human body frequency changes their activity, therefore in wireless body area networks, nodal mobility and non-line-of-sight condition will impact on performance of networks such as energy efficiency and reliable communication. We then proposed schemes which study on forwarding decisions against frequent change of topology and channel conditions to increase reliable connections and improve energy efficiency. In this work, we control the size of packets, forwarding rate based on ratio of input links and output links at each node. We also robust the network topology by extending the peer to peer IEEE 802.15.4-based. The adaptive topology from chain-based to grid-based can optimal our schemes. The simulation shows that these approaches are not only extending network lifetime to 48.2 percent but also increase around 6.08 percent the packet delivery ratio. The "hot spots" problem is also resolved with this approach.

Efficient Energy and Position Aware Routing Protocol for Wireless Sensor Networks

  • Shivalingagowda, Chaya;Jayasree, P.V.Y;Sah, Dinesh.K.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.1929-1950
    • /
    • 2020
  • Reliable and secure data transmission in the application environment assisted by the wireless sensor network is one of the major challenges. Problem like blind forwarding and data inaccessibility affect the efficiency of overall infrastructure performance. This paper proposes routing protocol for forwarding and error recovery during packet loss. The same is achieved by energy and hops distance-based formulation of the routing mechanism. The reachability of the intermediate node to the source node is the major factor that helps in improving the lifetime of the network. On the other hand, intelligent hop selection increases the reliability over continuous data transmission. The number of hop count is factor of hop weight and available energy of the node. The comparison over the previous state of the art using QualNet-7.4 network simulator shows the effectiveness of proposed work in terms of overall energy conservation of network and reliable data delivery. The simulation results also show the elimination of blind forwarding and data inaccessibility.

A Robust Wearable u-Healthcare Platform in Wireless Sensor Network

  • Lee, Seung-Chul;Chung, Wan-Young
    • Journal of Communications and Networks
    • /
    • v.16 no.4
    • /
    • pp.465-474
    • /
    • 2014
  • Wireless sensor network (WSN) is considered to be one of the most important research fields for ubiquitous healthcare (u-healthcare) applications. Healthcare systems combined with WSNs have only been introduced by several pioneering researchers. However, most researchers collect physiological data from medical nodes located at static locations and transmit them within a limited communication range between a base station and the medical nodes. In these healthcare systems, the network link can be easily broken owing to the movement of the object nodes. To overcome this issue, in this study, the fast link exchange minimum cost forwarding (FLE-MCF) routing protocol is proposed. This protocol allows real-time multi-hop communication in a healthcare system based on WSN. The protocol is designed for a multi-hop sensor network to rapidly restore the network link when it is broken. The performance of the proposed FLE-MCF protocol is compared with that of a modified minimum cost forwarding (MMCF) protocol. The FLE-MCF protocol shows a good packet delivery rate from/to a fast moving object in a WSN. The designed wearable platform utilizes an adaptive linear prediction filter to reduce the motion artifacts in the original electrocardiogram (ECG) signal. Two filter algorithms used for baseline drift removal are evaluated to check whether real-time execution is possible on our wearable platform. The experiment results shows that the ECG signal filtered by adaptive linear prediction filter recovers from the distorted ECG signal efficiently.

Trust based Secure Reliable Route Discovery in Wireless Mesh Networks

  • Navmani, TM;Yogesh, P
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3386-3411
    • /
    • 2019
  • Secured and reliable routing is a crucial factor for improving the performance of Wireless Mesh Networks (WMN) since these networks are susceptible to many types of attacks. The existing assumption about the internal nodes in wireless mesh networks is that they cooperate well during the forwarding of packets all the time. However, it is not always true due to the presence of malicious and mistrustful nodes. Hence, it is essential to establish a secure, reliable and stable route between a source node and a destination node in WMN. In this paper, a trust based secure routing algorithm is proposed for enhancing security and reliability of WMN, which contains cross layer and subject logic based reliable reputation scheme with security tag model for providing effective secured routing. This model uses only the trusted nodes with the forwarding reliability of data transmission and it isolates the malicious nodes from the providing path. Moreover, every node in this model is assigned with a security tag that is used for efficient authentication. Thus, by combining authentication, trust and subject logic, the proposed approach is capable of choosing the trusted nodes effectively to participate in forwarding the packets of trustful peer nodes successfully. The simulation results obtained from this work show that the proposed routing protocol provides optimal network performance in terms of security and packet delivery ratio.

A Scheme for Supporting Scalability on Packet Forwarding of ATM-based MPLS having Hardware Forwarding Engine (하드웨어 포워딩 엔진을 갖는 ATM 기반 MPLS LER의 패킷 포워딩 확정성을 지원하는 기법)

  • 박재형;유재호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04a
    • /
    • pp.400-402
    • /
    • 2001
  • 최근 인터넷의 급속한 사용 증가로 인해 전송 링크의 광대역 지원과 멀티미디어 트래픽의 QoS 보장 문제, 향상된 IP 서비스의 제공 문제 해결은 필수적이다. MPLS 기술은 IP의 유연성과 확장성을 제공할 수 있는 패러다임의 하나이다. MPLS 망의 경계에 위치하는 LER은 링크 계층 뿐만 아니라 IP 계층에서도 패킷을 전달해야 한다. 본 논문에서는 하드웨어 포워딩 엔진을 갖는 MPLS LER에서, 포워딩 엔진에서 처리할 수 없는 IP 계층의 패킷에 대해서 처리할 수 있는 방안에 대해서 기술한다. 그러한 방안에 의해서 하드웨어 포워딩 엔진을 장착한 LER의 패킷 전달에 관한 포워딩 엔진의 확장성을 지원하는 방법에 대해서 연구한다. 본 논문에서 제시된 기법은 ATM기반 MPLS LER에 적용되어 구현되었다.

Tunnel-Free Scheme Using a Routing Table in a PMIPv6-Based Nested NEMO Environment

  • Wie, Sunghong;Jang, Jaeshin
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.2
    • /
    • pp.82-94
    • /
    • 2013
  • In this paper, we propose a novel tunnel-free scheme in a proxy mobile IPv6 (PMIPv6)-based nested network mobility environment; several mobile nodes (MNs) and mobile routers (MRs) compose a hierarchical wireless network topology. Because tunnels created by several MRs overlap and data packets travel along several local mobility anchors (LMAs), the utilization of the wireless section is reduced and the packet forwarding path of the wire-line section is not optimal. In our tunnel-free scheme, the mobile access gateway (MAG) plays an important role in both the wireless and wire-line sections. Using a local binding update, this tunnel-free scheme forwards data packets with a host-based routing table without any tunnel. Establishing a direct tunnel between the MAG and the last LMA, this scheme removes nested tunnels between intermediate LMAs and MRs, and optimizes the forwarding path to the MN in the wire-line section.

Energy Aware Landmark Election and Routing Protocol for Grid-based Wireless Sensor Network (그리드 기반 무선센서네트워크에서 에너지 인지형 Landmark 선정 및 라우팅 프로토콜)

  • Sanwar Hosen, A.S.M.;Cho, Gi-Hwan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.177-180
    • /
    • 2011
  • In practice, it is well known that geographical and/or location based routing is highly effective for wireless sensor network. Here, electing some landmarks on the network and forwarding data based on the landmark is one of the good approaches for a vast sensing field with holes. In the most previous works, landmarks are elected without considering the residual energy on each sensor. In this paper, we propose an Energy aware Landmark Election and Routing (ELER) protocol to establish a stable routing paths and reduce the total power consumption. The proposed protocol makes use of each sensor's energy level on electing the landmarks, which would be utilized to route a packet towards the target region using greedy forwarding method. Our simulation results illustrate that the proposed scheme can significantly reduce the power dissipation and effectively lengthen the lifetime of the network.

A MAC Protocol for Efficient Burst Data Transmission in Multihop Wireless Sensor Networks (멀티홉 무선 센서 네트워크에서 버스트 데이타의 효율적인 전송을 위한 프로토콜에 관한 연구)

  • Roh, Tae-Ho;Chung, Kwang-Sue
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.3
    • /
    • pp.192-206
    • /
    • 2008
  • Multihop is the main communication style for wireless sensor networks composed of tiny sensor nodes. Until now, most applications have treated the periodic small sized sensing data. Recently, the burst traffic with the transient and continuous nature is increasingly introduced due to the advent of wireless multimedia sensor networks. Therefore, the efficient communication protocol to support this trend is required. In this paper, we propose a novel PIGAB(Packet Interval Gap based on Adaptive Backoff) protocol to efficiently transmit the burst data in multihop wireless sensor networks. The contention-based PIGAB protocol consists of the PIG(Packet Interval Gap) control algorithm in the source node and the MF(MAC-level Forwarding) algorithm in the relay node. The PIGAB is on basis of the newly proposed AB(Adaptive Backoff), CAB(Collision Avoidance Backoff), and UB(Uniform Backoff). These innovative algorithms and schemes can achieve the performance of network by adjusting the gap of every packet interval, recognizing the packet transmission of the hidden node. Through the simulations and experiments, we identify that the proposed PIGAB protocol considerably has the stable throughput and low latency in transmitting the burst data in multihop wireless sensor networks.