• Title/Summary/Keyword: Packaging Box Simulation

Search Result 8, Processing Time 0.021 seconds

Development of the Packaging Specification Design System Based on Web Online Packaging IT Service (온라인 기반의 패키징 IT 서비스를 위한 패키징 디자인 사양 설계 시스템 개발에 관한 연구)

  • You, Yeon-Hwa;Jang, Dong-Sik;Park, Sang-Hee;Shim, Jin-Kie;Lee, Jun-Young
    • Journal of Information Technology Services
    • /
    • v.11 no.2
    • /
    • pp.275-289
    • /
    • 2012
  • Although the specification of packaging box is one of the most important process to be considered before deciding cost in terms of production and logistics, there are no efficient services in our country at this time as such the making decision only through the empirical knowledge. In this research, we have developed the packaging specification design system based on the web online packaging IT service. The developed system was advanced from the existing-inefficient process of deciding the specification of packaging box, and which can decide the specification of packaging box considering the efficiency of logistics through use of IT based tool. Therefore, this study shows applied cases of normalized packaging process through the obtained packaging design simulation program. The packaging specification design system can provide the simulation and user interface. Those could calculate the specification of packaging box(packaging box size, packaging box quantity, packaging box pattern, packaging compressive strength, packaging cost etc.) considering the efficiency of logistics.

Modeling and Simulation of Heat Transfer inside the Packaging Box for Vaccine Shipping (백신 수송용 포장재 내부에서 열 전달의 모델링 및 시뮬레이션)

  • Duong, Dao Van;Choi, Ho-Suk;Lee, Sung-Chan;Bae, Yoon-Sung
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.604-609
    • /
    • 2008
  • This study is about the modeling and simulation of heat transfer in the box for packaging and shipping of vaccines. Comparison of the simulation results with experimental data revealed that a one-dimensional model (a spherical model of using a radius equivalent to the rectangular geometry of box) showed good agreement with experimental data during cooling process but did not successfully simulate heating process. It is considered that a rigorous boundary condition is not properly applied for outer surface of the box. However, we could successfully develop a basic algorithm for simulating heat transfer through multi-slabs combined with different materials including phase change material.

Comparison between Water and N-Tetradecane as Insulation Materials through Modeling and Simulation of Heat Transfer in Packaging Box for Vaccine Shipping

  • Dao, Van-Duong;Jin, Ik-Kyu;Hur, Ho;Choi, Ho-Suk
    • Clean Technology
    • /
    • v.22 no.1
    • /
    • pp.45-52
    • /
    • 2016
  • This study reports on the modeling and simulation of heat transfer in packaging boxes used for vaccine shipping. Both water and n-tetradecane are used as primary insulation materials inside a multi-slab system. The one-dimensional model, which is a spherical model using a radius equivalent to the rectangular geometry of container, is applied in this study. N-tetradecane with low thermal diffusivity and proper phase transition temperature exhibits higher heat transfer resistance during both heating and cooling processes compared to water. Thus, n-tetradecane is a better candidate as an insulating material for packaging containers for vaccine shipping. Furthermore, the developed method can also become a rapid and economic tool for screening appropriate phase change materials used as insulation materials with suitable properties in logistics applications.

Optimum Packaging Design of Packaging Tray and Cushion Pad of Korean Pears for Exporting using FEA Simulation (FEA 시뮬레이션 기법을 이용한 수출용 한국 배 포장 트레이 및 완충패드 최적 포장설계)

  • Choi, Dong-Soo;Son, Jae-Yong;Kim, Jin-Se;Kim, Yong-Hoon;Park, Chun-Wan;Jung, Hyun-Mo;Hwang, Sung-Wook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.843-852
    • /
    • 2020
  • Among the many packaging materials used in cushion packaging, there is a lack of optimum design for packaging trays and cushion pads used in pear packaging for export and domestic distribution. It causes over-packaging due to excessive material input, and can be solved by applying various parameters needed to optimize the design of the packaging tray and cushion pad considering the packaging material and the number of pears in the box. In the case of a cushion pad for pears, the economic efficiency of material and thickness should be considered. Therefore, it is possible to design a packaging tray and cushion pad depending on eco-friendly packaging materials (PLA, PET) used by applying appropriate design parameters. The static characteristics of the materials used for the packaging of pears were analyzed using FEA (finite element analysis) simulation technique to derive the optimal design parameters. In this study, we analyzed the contact stress and deformation of PET, PLA tray (0.1, 0.5 1.0, 1.5 and 2 mm) and PET foam (2.0, 3 .0 and 4.0 mm) with pears to derive appropriate cushion packaging design factors. The contact stress between the pear and PET foam pad placed on PLA, PET trays were simulated by FEA considering the bioyield strength (192.54±28 kPa) of the pears and safety factor (5) of packaging design, which is the criterion of damage to the pears. For the combination of PET tray and PET foam buffer pad, the thickness of the PET foam is at least 3 mm, the thickness of the PET foam is at least 1.0 mm, the thickness of the foam is at least 2 mm, and if the thickness of the PET tray is at least 1.5 mm, the thickness of the foam is at least 1 mm, suitable for the packaging design. In addition, for the combination of PLA tray and PET foam pad, the thickness of the PET foam was not less than 2 mm if the thickness of the PLA tray was 0.5 mm, and 1 mm or more if the thickness of the PLA tray was not less than 1.0 mm, the thickness of the PET foam was suitable for the packaging design.

Static and Dynamic FEM Simulation of Packaging Tray Cup Pad for Korean Pears

  • Choi, Dong-Soo;Son, Jea-Yong;Kim, Jin-Se;Kim, Yong-Hoon;Park, Chun-Wan;Jung, Hyun-Mo;Hwang, Sung-Wook
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.25 no.3
    • /
    • pp.89-94
    • /
    • 2019
  • Among the many packaging materials used in cushion packaging, there is a lack of optimum design for the tray cup pad used in fruit packaging for export and domestic distribution. It causes over-packaging due to excessive material input, and this could be solved by applying various parameters needed to optimize the design of the tray cup pad considering the packaging material and the quantity of fruits in the box. In the case of a tray cup for fruits, the economic efficiency of material and thickness should be considered. Therefore, it is possible to design a tray cup pad depending on the packaging material used by applying appropriate design parameters. The static and dynamic characteristics of the materials used for packaging of pears were analyzed by using the FEM (finite element Method) simulation technique to derive the optimal design parameters. And by applying the appropriate design parameters considering the quantity of fruit and distribution environment, it is possible to design an appropriate fruit tray cup pad. In this study, as a result of simulating the contact stresses between the fruit and the tray cup for the PP, PE, and PS materials used in the fruit tray cup, the material with the lowest contact stress was PP and the value was found to be 398 Pa. The contact displacement between fruit and tray cup using this material was about 0.0463 mm, which was the lowest value compared with other materials. Also the resonance frequency band of tray cup made of PP material was below 36.81 Hz, and the strain energy was below 12.20 J. The resonant frequency band of the pear is more than 80 Hz and it could be applied to all the tray cup materials as compared with the resonance band of 38.81 Hz or less which is the resonance band of all tray cup pads for packaging. Finally, PP is the most suitable material for the tray cup pad.

Effects of an ice pack and sulfur generating pad treatment for home delivery on the quality of 'Duke' blueberry fruits

  • Lim, Byung-Seon;Choi, Mi-Hee;Lee, Jin-Su
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.811-821
    • /
    • 2018
  • This study focused on the improvement of blueberry delivery service using pre-cooled ice and $SO_2$ pads to prevent an increase in the fruit temperature as well as decay. To maintain the fruit quality during low temperature storage, the effect of a $SO_2$ pad and modified atmosphere packaging was also examined. Harvested blueberries were precooled at $15^{\circ}C$, sorted, and packaged. And the fruits were placed in a similar environment as that for the parcel service. Part of the fruits were stored at $0^{\circ}C$ for long term storage. The air temperature in the delivery box increased along with an increase in the simulated delivery time regardless of the treatment. However, the rate of temperature increase was lower in the ice pad treatment. No significant difference was not found after 48 h. The oxygen concentration in the box ranged between 10.5 - 14.5% in the ice pad treatment, which was higher than that of the untreated control (7.5 - 11.9%) whereas the $CO_2$ concentration was lower in the ice pad treatment. No differences were found in the occurrence of off-flavor, decay, and sensory quality loss during the 48 hours of the parcel service simulation. The combined treatment of the $SO_2$ pad and modified atmosphere packaging (MAP) using a perforated film increased the shelf-life of the blueberry fruits, the overall quality such as firmness, and the soluble solid content was not different between the treatments except for the decay incidence. No decayed fruit was found in the combined treatment. However, the percentage of decayed fruit in the control was 25% on day 15 of storage and 75% on day 33 of storage, respectively.

Evaluation Study of Performance for Solar Energy Blocking of Smart Windows based on Phase Retardation Film (Phase Retardation 필름 기반 스마트윈도우의 태양열차단 성능 평가 시험 연구)

  • Il-Gu Kim;Ho-Chang Yang;Young-Min Park;Yo-Han Suh;Seung Hyun Lee;Young Kyu Hong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.3
    • /
    • pp.67-71
    • /
    • 2024
  • A smart window based on a retarder can transmit or block polarized lights by overlapping two smart windows. In the study, tests were conducted to evaluate the performance of blocking solar heat using smart windows with a size of 300×300 mm2. Solar heat gain coefficient (SHGC) values were derived through simulation using transmission and reflectance data of the smart windows. As a result of the simulation, it showed that SGHC is effective in blocking solar heat by obtaining values of 0.722 and 0.615 in transmission and blocking mode of smart windows, respectively. The test boxes were fabricated in order to verify the effect of suppressing temperature rise when applying smart windows, the inside temperature in test boxes, which are installed bare glass (reference) and two smart windows with transmission and blocking mode, were measured at 10 minutes-interval for 7 days. As of 1 p.m., the inside temperature of the test boxes with the smart windows applied showed lower temperature compared to the reference. In particular, on the day when the temperature of reference box was the highest at 66.1℃, the temperature of the test box with the smart window applied showed 61.0℃, which was lowered by 5.1℃.

Effects of film liners, ethylene scrubber, alcohol releaser and chlorine dioxide on the berry quality during simulated marketing in 'Campbell Early' grapes

  • Kim, Sung-Joo;Choi, Cheol;Ahn, Young-Jik;Lim, Byung-Sun;Chun, Jong-Pil
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.3
    • /
    • pp.415-424
    • /
    • 2020
  • This study investigated the effects of an ethylene scrubber (ES) with a micro-perforated polypropylene (MP-PP, 30 ㎛) or a high density polyethylene (MP-HDPE, 30 ㎛) film liner for the export carton packaging box in 'Campbell Early' grapes. Rachis browning was highest in the untreated group, followed by MP-PP and MP-HDPE for 14 days of simulated marketing at 20℃. The combination treatment of ES with the film liners showed a partial inhibition of the rachis browning regardless of the film liners. The effects of an alcohol releaser (AR) sachet or chlorine dioxide (CD) diffuser co-packaging were also investigated in the 'Campbell Early' grapes packed with the MP-HDPE (40 × 99 pin hole·m-2) film liner. The CD 1 g treatment showed a very limited weight loss of 1.1%, which was significantly lower than the 4.7% of the untreated control after 14 days of simulation marketing at 20℃. The berry shatter was 0.7% for the MP-HDPE + CD 1 g treatment and 1.8% for the MP-HDPE + CD 5 g treatment on the 10th day of the simulated marketing, which was significantly lower than the 8.9% of the control. The stem browning was significant suppressed until the 10th day of the simulated marketing. In particular, the CD 1 g treatment in combination with the MP-HDPE showed a low rachis and pedicel browning index of 2.0, which is 50% and 40% lower than that of the untreated control and the MP-HDPE single treatment, respectively. In addition, the CD 1 g treatment group showed a higher decay reduction effect than the CD 5 g treatment group, which caused high concentration damage.