• Title/Summary/Keyword: Pacemaker Potentials

Search Result 35, Processing Time 0.025 seconds

Effects of Alisma canaliculatum Extract in Pacemaker Potential of Intestinal Interstitial cells of Cajal in mice (생쥐 소장 및 대장 카할세포의 자발적 탈분극에서 택사의 효과에 관한 비교연구)

  • Kwon, Hyo Eun;Park, Dong Suk;Kim, Jeong Nam;Kim, Byung Joo
    • Herbal Formula Science
    • /
    • v.30 no.2
    • /
    • pp.37-44
    • /
    • 2022
  • Objectives : The purpose of this study was to examine the effects of Alisma canaliculatum Extract (ACE) on pacemaker potentials of small and large intestinal interstitial Cells of Cajal (ICC) in mice. Methods : We used enzymatic digestions to dissociate the ICC in the small and large intestine in mice. The whole-cell patch-clamp method was used to record pacemaker potentials in ICC. Results : 1. The ICC generated the pacemaker potentials in small intestine in mice. ACE (0.1-1mg/ml) induced membrane depolarization and decreased frequency with concentration-dependent manners. 2. Pretreatment with a Ca2+ free solution, Na+ 5 mM solution or 2-APB, a nonselective cation channel blocker, stopped the small intestinal ICC pacemaker potentials. In the case of Ca2+-free solution, Na+ 5 mM solution or 2-APB, ACE had no effects on the membrane depolarizations in small intestinal ICC. 3. The ICC generated the pacemaker potentials in large intestine in mice. Membrane depolarization appears regularly in the small intestine, but irregularly in the large intestine. ACE induced membrane depolarization (0.1-1mg/ml) and increased frequency (0.1-0.5mg/ml). 4. Pretreatment with a Ca2+ free solution, Na+ 5 mM solution or 2-APB, stopped the large intestinal ICC pacemaker potentials. In the case of Ca2+-free solution, Na+ 5 mM solution or 2-APB, ACE depolarized the membrane depolarizations in large intestinal ICC. 5. In mice, intestinal transit rate (ITR) values were dose-dependently decreased by the intragastric administration of ACE. Conclusions : These results suggest that ACE can regulate the pacemaker activity of ICC and the reaction by ACE is different from the small and large intestinal ICC, and the control of the intestinal motion by ACE may be caused by many complex processes.

Effects of Samchulkunbi-tang in Cultured Interstitial Cells of Cajal of Murine Small Intestine

  • Kim, Jung Nam;Kwon, Young Kyu;Kim, Byung Joo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.1
    • /
    • pp.112-117
    • /
    • 2013
  • We studied the modulation of pacemaker activities by Samchulkunbi-tang (SCKB) in cultured interstitial cells of Cajal (ICC) from murine small intestine with the whole-cell patch-clamp technique. Externally applied SCKB produced membrane depolarization in the current-clamp mode. The pretreatment with $Ca^{2+}$-free solution and thapsigargin, a $Ca^{2+}$-ATPase inhibitor in endoplasmic reticulum, abolished the generation of pacemaker potentials and suppressed the SCKB-induced action. The application of flufenamic acid (a nonselective cation channel blocker) abolished the generation of pacemaker potentials by SCKB. However, the application of niflumic acid (a chloride channel blocker) did not inhibit the generation of pacemaker potentials by SCKB. In addition, the membrane depolarizations were inhibited by not only GDP-${\beta}$-S, which permanently binds G-binding proteins, but also U-73122, an active phospholipase C inhibitor. These results suggest that SCKB modulates the pacemaker activities by nonselective cation channels and external $Ca^{2+}$ influx and internal $Ca^{2+}$ release via G-protein and phospholipase C-dependent mechanism. Therefore, the ICC are targets for SCKB and their interaction can affect intestinal motility.

Modulation of Pacemaker Potentials by Pyungwi-San in Interstitial Cells of Cajal from Murine Small Intestine - Pyungwi-San and Interstitial Cells of Cajal -

  • Kim, Jung Nam;Song, Ho Jun;Lim, Bora;Kwon, Young Kyu;Kim, Byung Joo
    • Journal of Pharmacopuncture
    • /
    • v.16 no.1
    • /
    • pp.43-49
    • /
    • 2013
  • Objective: Pyungwi-san (PWS) plays a role in a number of physiologic and pharmacologic functions in many organs. Interstitial cells of Cajal (ICCs) are pacemaker cells that generate slow waves in the gastrointestinal (GI) tract. We aimed to investigate the beneficial effects of PWS in mouse small-intestinal ICCs. Methods: Enzymatic digestion was used to dissociate ICCs from the small intestine of a mouse. The whole-cell patch-clamp configuration was used to record membrane potentials from the cultured ICCs. Results: ICCs generated pacemaker potentials in the GI tract. PWS produced membrane depolarization in the current clamp mode. Pretreatment with a $Ca^{2+}$-free solution and a thapsigargin, a $Ca^{2+}$-ATPase, inhibitor in the endoplasmic reticulum, eliminated the generation of pacemaker potentials. However, only when the thapsigargin was applied in a bath solution, the membrane depolarization was not produced by PWS. Furthermore, the membrane depolarizations due to PWS were inhibited not by U-73122, an active phospholipase C inhibitor, but by chelerythrine and calphostin C, protein kinase C inhibitors. Conclusions: These results suggest that PWS might affect GI motility by modulating the pacemaker activity in the ICCs.

Modulation of Fermented Lotus Root on Pacemaker Potentials in Interstitial Cells of Cajal of Murine Small Intestine (생쥐 소장 카할세포 조절에 발효 연근의 효능 연구)

  • Park, Dong Suk;Kim, Jeong Nam;Kwon, Hyo Eun;Kwon, Min Ji;Park, Eun-Jung;Lee, Hae-Jeung;Kim, Byung Joo
    • Herbal Formula Science
    • /
    • v.29 no.3
    • /
    • pp.119-125
    • /
    • 2021
  • Obejectives : The purpose of this study is to find out the efficacy of pacemaker potentials of interstitial Cells of Cajal (ICC) by Fermented Lotus Root (FLR) in small intestine. Methods : Enzyme digestions were used to separate the ICC. Using electrophysiological methods, pacemaker potentials were measured and intestinal transit rates (ITR) experiments were conducted to identify in vivo gastrointestinal motility. Results : 1. FLR (0.5-10 mg/ml) caused membrane depolarization by electrophysiological methods. 2. In the case of pretreatment with a Ca2+ free solution and thapsigargin, the pacemaker potential disappeared and in this case, FLR did not have a membrane depolarization reaction. 3. Lowering the concentration of extracellular Na+ concentration stoped the pacemaker potentials and inhibited the reaction caused by FLR. Flufenamic acid also inhibited the reaction by FLR. 4. In mice, ITR was increased by FLR. Conclusions : This study shows that FLR can control ICC by an internal/external Ca2+ and Na+. It also shows that FLR can be a good candidate for gastrointestinal motility medication development.

Effects of Herbal medicines in Pacemaker Potential of Colonic Intestinal Interstitial cells of Cajal in mice (생쥐 대장 카할세포의 자발적 탈분극에서 한약의 효과에 관한 비교연구)

  • Na Ri, Choi;Haejeong, Jeong;Woo-gyun, Choi;Byung Joo, Kim
    • Herbal Formula Science
    • /
    • v.31 no.1
    • /
    • pp.11-19
    • /
    • 2023
  • Objectives : The purpose of this study was to examine the effects of herbal medicines on pacemaker potentials of large intestinal interstitial Cells of Cajal (ICC) in mice. Methods : We made the ICC culture in large intestine in mice and used the electrophysiological method to record pacemaker potentials. Also we used MTT assay to check cell viability and examined the ICC protein expression by western blot. Results : 1.Glycyrrhiza uralensis Fischer (GF) (50-150 ㎍/ml) induced pacemaker depolarization and decreased frequency with concentration-dependent manners. EC50 is 58.95 ㎍/ml. Angelica gigas (AG) (50-200 ㎍/ml) induced pacemaker depolarization and decreased frequency with concentration-dependent manners. EC50 is 77.22 ㎍/ml. Poncirus fructus (PF) (10-100 ㎍/ml) induced pacemaker depolarization and decreased frequency with concentration-dependent manners. EC50 is 13.39 ㎍/ml. Citrus unshiu S. Marcov. (CU) (10-500 ㎍/ml) induced pacemaker depolarization and decreased frequency with concentration-dependent manners. EC50 is 139.80 ㎍/ml. Gardenia jasminoides J. Ellis (GJ) (100-500 ㎍/ml) induced pacemaker depolarization and decreased frequency with concentration-dependent manners. EC50 is 78.70 ㎍/ml. Coptis chinensis (CC) (100-1000 ㎍/ml) induced pacemaker depolarization and decreased frequency with concentration-dependent manners. EC50 is 138.10 ㎍/ml. Scutellaria baicalensis (SB) (10-100 ㎍/ml) had no effects on pacemaker potentials and decreased frequency with concentration-dependent manners. IC50 is 18.34 ㎍/ml. Atractylodes macrocephala koidzumi (AM) (10-100 ㎍/ml) induced pacemaker hyperpolarizations and decreased frequency with concentration-dependent manners. IC50 is 18.54 ㎍/ml. 2. PF, SB and AM had no effects on cell death in large ICC. 3. PF increased the ANO1 and c-kit protein expression and SB and AM increased the c-kit protein expression in large ICC. Conclusions : These results suggest that PF, SB, and AM are likely to be the optimal combination of herbal medicines that can be used to treat diseases such as gastrointestinal motility disorders such as irritable bowel syndrome.

Inhibitory Effects of Naeso-san on Pacemaker Potentials in Interstitial Cells of Cajal of Murine Small Intestine (생쥐 소장 카할세포의 내향성 향도잡이 전압에 미치는 내소산의 억제효과에 관한 연구)

  • Hong, Noo Ri;Ahn, Tae Seok;Park, Hyun Soo;Chae, Han;Kwon, Young Kyu;Kim, Byung Joo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.28 no.6
    • /
    • pp.630-635
    • /
    • 2014
  • The purpose of this study was to investigate the effects of Naeso-san in interstitial cells of Cajal (ICCs) in murine small intestine. First, we isolated ICCs from murine small intestine. After that, we cultured these cells for 1 days. The patch-clamp technique was applied on ICCs that formed network-like structures in culture (1 days). Spontaneous rhythms were routinely recorded from cultured ICCs under current-clamp conditions, and the ICCs within networks displayed more robust electrical rhythms (pacemaker potentials). To understand the relationship between Naeso-san and pacemaker activity in ICCs, we examined the effects of Naeso-san on pacemaker potentials of ICCs. In current clamp mode (I = 0), the addition of Naeso-san (10 mg/ml - 50 mg/ml) decreased the amplitude and frequency of the pacemaker potentials of ICCs in a dose dependent manner. However, these effects were blocked by intracellular $GDP{\beta}S$, a G-protein inhibitor, and glibenclamide, a specific ATP-sensitive K+ channels blocker. Pretreatment with SQ-22536, an adenylate cyclase inhibitor, did not block the Naeso-san induced effects, whereas pretreatment with ODQ, a guanylate cyclase inhibitor, or L-NAME, an inhibitor of nitric oxide (NO) synthase blocked the Naeso-san induced effects. Our findings provide insight into unraveling the modulation of Naeso-san in pacemaker potentials of ICCs and developing therapeutic agents against gastrointestinal motility disorders.

Involvement of D2 Receptor on Dopamine-induced Action in Interstitial Cells of Cajal from Mouse Colonic Intestine

  • Zuoa, Dong Chuan;Shahia, Pawan Kumar;Choia, Seok;Jun, Jae-Yeoul;Park, Jong-Seong
    • Biomedical Science Letters
    • /
    • v.18 no.3
    • /
    • pp.218-226
    • /
    • 2012
  • Dopamine is an enteric neurotransmitter that regulates gastrointestinal motility. This study was done to investigate whether dopamine modulates spontaneous pacemaker activity in cultured interstitial cells of Cajal (ICCs) from mouse using whole cell patch clamp technique, RT-PCR and live $Ca^{2+}$ imaging analysis. ICCs generate pacemaker inward currents at a holding potential of -70 mV and generate pacemaker potentials in current-clamp mode. Dopamine did not change the frequency and amplitude of pacemaker activity in small intestinal ICCs. On the contrary dopamine reduced the frequency and amplitude of pacemaker activity in large intestinal ICCs. RT-PCR analysis revealed that Dopamine2 and 4-receptors are expressed in c-Kit positive ICCs. Dopamine2 and 4 receptor agonists inhibited pacemaker activity in large intestinal ICCs mimicked those of dopamine. Domperidone, dopamine2 receptor antagonist, increased the frequency of pacemaker activity of large intestinal ICCs. In $Ca^{2+}$-imaging, dopamine inhibited spontaneous intracellular $Ca^{2+}$ oscillations of ICCs. These results suggest that dopamine can regulate gastrointestinal motility through modulating pacemaker activity of large intestinal ICCs and dopamine effects on ICCs are mediated by dopamine2 receptor and intracellular $Ca^{2+}$ modulation.

Effects of Histamine on Cultured Interstitial Cells of Cajal in Murine Small Intestine

  • Kim, Byung Joo;Kwon, Young Kyu;Kim, Euiyong;So, Insuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.2
    • /
    • pp.149-156
    • /
    • 2013
  • Interstitial cells of Cajal (ICCs) are the pacemaker cells in the gastrointestinal tract, and histamine is known to regulate neuronal activity, control vascular tone, alter endothelial permeability, and modulate gastric acid secretion. However, the action mechanisms of histamine in mouse small intestinal ICCs have not been previously investigated, and thus, in the present study, we investigated the effects of histamine on mouse small intestinal ICCs, and sought to identify the receptors involved. Enzymatic digestions were used to dissociate ICCs from small intestines, and the whole-cell patch-clamp configuration was used to record potentials (in current clamp mode) from cultured ICCs. Histamine was found to depolarize resting membrane potentials concentration dependently, and whereas 2-PEA (a selective H1 receptor agonist) induced membrane depolarizations, Dimaprit (a selective H2-agonist), R-alpha-methylhistamine (R-alpha-MeHa; a selective H3-agonist), and 4-methylhistamine (4-MH; a selective H4-agonist) did not. Pretreatment with $Ca^{2+}$-free solution or thapsigargin (a $Ca^{2+}$-ATPase inhibitor in endoplasmic reticulum) abolished the generation of pacemaker potentials and suppressed histamine-induced membrane depolarization. Furthermore, treatments with U-73122 (a phospholipase C inhibitor) or 5-fluoro-2-indolyl des-chlorohalopemide (FIPI; a phospholipase D inhibitor) blocked histamine-induced membrane depolarizations in ICCs. On the other hand, KT5720 (a protein kinase A inhibitor) did not block histamine-induced membrane depolarization. These results suggest that histamine modulates pacemaker potentials through H1 receptor-mediated pathways via external $Ca^{2+}$ influx and $Ca^{2+}$ release from internal stores in a PLC and PLD dependent manner.

Pituitary Adenylate Cyclase-activating Polypeptide Inhibits Pacemaker Activity of Colonic Interstitial Cells of Cajal

  • Wu, Mei Jin;Kee, Keun Hong;Na, Jisun;Kim, Seok Won;Bae, Youin;Shin, Dong Hoon;Choi, Seok;Jun, Jae Yeoul;Jeong, Han-Seong;Park, Jong-Seong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.5
    • /
    • pp.435-440
    • /
    • 2015
  • This study aimed to investigate the effect of pituitary adenylate cyclase-activating peptide (PACAP) on the pacemaker activity of interstitial cells of Cajal (ICC) in mouse colon and to identify the underlying mechanisms of PACAP action. Spontaneous pacemaker activity of colonic ICC and the effects of PACAP were studied using electrophysiological recordings. Exogenously applied PACAP induced hyperpolarization of the cell membrane and inhibited pacemaker frequency in a dose-dependent manner (from 0.1 nM to 100 nM). To investigate cyclic AMP (cAMP) involvement in the effects of PACAP on ICC, SQ-22536 (an inhibitor of adenylate cyclase) and cell-permeable 8-bromo-cAMP were used. SQ-22536 decreased the frequency of pacemaker potentials, and cell-permeable 8-bromo-cAMP increased the frequency of pacemaker potentials. The effects of SQ-22536 on pacemaker potential frequency and membrane hyperpolarization were rescued by co-treatment with glibenclamide (an ATP-sensitive $K^+$ channel blocker). However, neither $N^G$-nitro-L-arginine methyl ester (L-NAME, a competitive inhibitor of NO synthase) nor 1H-[1,2,4]oxadiazolo[4,3-${\alpha}$]quinoxalin-1-one (ODQ, an inhibitor of guanylate cyclase) had any effect on PACAP-induced activity. In conclusion, this study describes the effects of PACAP on ICC in the mouse colon. PACAP inhibited the pacemaker activity of ICC by acting through ATP-sensitive $K^+$ channels. These results provide evidence of a physiological role for PACAP in regulating gastrointestinal (GI) motility through the modulation of ICC activity.

Ginsenoside Re inhibits pacemaker potentials via adenosine triphosphate-sensitive potassium channels and the cyclic guanosine monophosphate/nitric oxide-dependent pathway in cultured interstitial cells of Cajal from mouse small intestine

  • Hong, Noo Ri;Park, Hyun Soo;Ahn, Tae Seok;Kim, Hyun Jung;Ha, Ki-Tae;Kim, Byung Joo
    • Journal of Ginseng Research
    • /
    • v.39 no.4
    • /
    • pp.314-321
    • /
    • 2015
  • Background: Ginseng belongs to the genus Panax. Its main active ingredients are the ginsenosides. Interstitial cells of Cajal (ICCs) are the pacemaker cells of the gastrointestinal (GI) tract. To understand the effects of ginsenoside Re (GRe) on GI motility, the authors investigated its effects on the pacemaker activity of ICCs of the murine small intestine. Methods: Interstitial cells of Cajal were dissociated from mouse small intestines by enzymatic digestion. The whole-cell patch clamp configuration was used to record pacemaker potentials in cultured ICCs. Changes in cyclic guanosine monophosphate (cGMP) content induced by GRe were investigated. Results: Ginsenoside Re ($20-40{\mu}M$) decreased the amplitude and frequency of ICC pacemaker activity in a concentration-dependent manner. This action was blocked by guanosine 50-[${\beta}-thio$]diphosphate [a guanosine-5'-triphosphate (GTP)-binding protein inhibitor] and by glibenclamide [an adenosine triphosphate (ATP)-sensitive $K^{+}$ channel blocker]. To study the GRe-induced signaling pathway in ICCs, the effects of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (a guanylate cyclase inhibitor) and RP-8-CPT-cGMPS (a protein kinase G inhibitor) were examined. Both inhibitors blocked the inhibitory effect of GRe on ICC pacemaker activity. L-NG-nitroarginine methyl ester ($100{\mu}M$), which is a nonselective nitric oxide synthase (NOS) inhibitor, blocked the effects of GRe on ICC pacemaker activity and GRe-stimulated cGMP production in ICCs. Conclusion: In cultured murine ICCs, GRe inhibits the pacemaker activity of ICCs via the ATP-sensitive potassium ($K^{+}$) channel and the cGMP/NO-dependent pathway. Ginsenoside Re may be a basis for developing novel spasmolytic agents to prevent or alleviate GI motility dysfunction.