• Title/Summary/Keyword: PZT transducers

Search Result 72, Processing Time 0.024 seconds

The Determination of Transducer Locations for Active Structural Acoustic Control of the Radiated Sound from Vibrating Plate (평판에서 방사되는 소음의 능동구조소음제어를 위한 변환기의 위치결정)

  • 김흥섭;홍진석;이충휘;오재응
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.9
    • /
    • pp.694-701
    • /
    • 2002
  • In this paper, through the study on locations of structural transducers for active control of the radiated sound from the vibrating plate, the active structural acoustic control (ASAC) system is proposed. And, for the evaluation of the proposed location, the experiment of the active structural acoustic control is implemented using the multi-channel filtered-x LMS algorithm and an additional filter (Acoustic Prediction Filter) to estimate the radiated sound using the acceleration signals of the plate. The structural transducers are piezoceramic actuator (PZT) and accelerometer. PZT is used as an actuator to reduce the vibration and the radiated sound. To maximize the control performance, each PZT actuator is located at the position that has the largest control sensitivity of the plate bending moment in the direction of x and y coordinates and the optimal PZT location is validated experimentally. Also, to find the acoustic prediction filter accurately, two accelerometers are located at the positions that have the largest radiation efficiencies of the plate, and the proposed locations are validated by simulation using the Rayleigh integral. The multi-channel filtered-x LMS algorithm is introduced to control a complex 2-D structural vibration mode. Finding the locations of structural transducers for active structural acoustic control of the radiated sound, the active structural acoustic control (ASAC) system can be presented and validated by experiments using a real time control system.

Dielectric and Piezoelectric Properties of Porous PZT Ceramics (다공질 압전 세라믹 PZT의 유전 및 압전 특성)

  • Joo, Yong-Khoan;Park, Jung-Hak;Choi, Hun-Il;SaGong, Geon
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1475-1477
    • /
    • 1994
  • Porous piezoelectric ceramics of PZT have been newly developed to apply for ultrasonic transducers. The porous PZT was prepared from a mixture of PZT and polyvinylalcohol (PVA) powders by BURPS(Burnout Plastic Sphere) technique. Porous PZT bodies were shown a homogeneous microstructure consisting of 30 - 80 (${\mu}m$) pore size in sintered PZT bodies. The dielectric and piezoelectric properties on various PVA wt.% have investigated.

  • PDF

A Study on PZT-5A Probe for Nondestructive Inspection (비파괴검사를 위한 PZT-5A 탐촉자에 관한 연구)

  • 황현석
    • Electrical & Electronic Materials
    • /
    • v.10 no.2
    • /
    • pp.119-125
    • /
    • 1997
  • In this study, piezoelectric transducers were designed and manufactured using PZT-5A which had relatively high electromechanical coefficient, nondestructive testing system was developed which was able to inspect automatically using stepping motors, PC-Lab, and PC-Scope. The optimum design conditions for NDT were presented and verified comparing PZT-5A probes with comercial probes. It was proved by simulation and experiments that Epoxy is a good material as matching and backing layers. The envelope was reduced 60% with matching layer and 76% with matching and backing layer. NDT was successfully carried out for aluminum test pieces. Distance error of PZT-5A probe was 2.8%.

  • PDF

Piezoelectric Polymer Ultrasound Transducers and Its Biomedical Applications (압전고분자 초음파 트랜스듀서와 생의학적 응용)

  • Ha, Kang-Lyeol;Cao, Yonggang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.5
    • /
    • pp.585-596
    • /
    • 2012
  • PVDF(poly vinylidene fluoride) and P(VDF-TrFE)(poly vinylidene fluoride-tetrafluoroethylene) are the typical piezoelectric polymers with unique properties. Even they are inferior to conventional piezoelectric ceramics PZT in electromechanical conversion efficiency and interior loss, though they are superior in receiving sensitivity and frequency bandwidth. Their acoustic impedances are relatively close to water or biological tissue and it is easier to make thin film than other piezoelectric materials. Futhermore, the film is so flexible that it is easy to attach on a complex surface. Those properties are suitable for the ultrasound transducers which are useful for medical and biological application, so that various types of polymer transducers have been developed. In this paper, several important considerations for design and fabrication of piezoelectric polymer transducers were described and their effect on the transducer performance were demonstrated through the KLM model analysis. Then, it was briefly reviewed about the structures of the polymer transducers developed for obtaining images as well as the characteristics of the images in several important medical and biological application fields.

Ultrasonic Sensors for Steel Structure Inspection (강구조물(鋼構造物) 진단(診斷)을 위한 초음파(超音波) 센서)

  • Shin, Byoung-Churl
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.2
    • /
    • pp.170-176
    • /
    • 1998
  • The team mixed PbO, $ZrO_2$, $TiO_2$, $Nb_2O_5$ and $MnCO_3$, to make $Pb[(Zr_{0.54}\;Ti_{0.46})\;Nb_{0.005}]O_3+4%MnCO_3$. The electroded PZT ceramics were poled by 3 kV/mm at $110^{\circ}C$ for 600 s. We assembled the 0.4mm thick PZT slices into ultrasonic transducers. Central frequency of the probe is 5 MHz, which is proper to the thickness gauge for steel pipes and for flaw detector. The probe can detect a disk shape defect of 1mm diameter at 15cm deep in steel block. The new probe's Fresnel zone that the ultrasonic beam do not broaden is 13mm. Over the Fresnel zone, the ultrasonic beam spreads. Half of the beam spread angle of the probe is $4.3^{\circ}-4.6^{\circ}$. This probe can be used for the ultrasonic transducers for non-destructive testing of steel bridges.

  • PDF

A Study on PZT-5A Probe for Nondestructive Inspection (비파괴검사를 위한 PZT 5A 탐촉자에 관한 연구)

  • 황현석;정규원;이종덕;송준태
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.245-248
    • /
    • 1996
  • In this study, piezoelectric transducers were designed and manufactured using PZT-5A which had relatively high electromechanical coefficient, NDT system was developed with was able to inspect automatically using stepping motors, PC-Lab, and PC-Scope The optimum design conditions for NDT were presented and verified comparing PZT-5A probes with comercial probes. It was proved with comercial probes. It was proved by simulation and experiments that Epoxy is good as material of matching and backing layers. The envelope was reduced 60% with matching layer and 76% with matching and backing layer. NDT was successfully carried out for aluminum test pieces. Distance error of PZT-5A probe was 2.8%.

  • PDF

Characteristics of Point-Focus Type Ultrasonic Transducer using PVDF Element (고분자(高分子) PVDF 진동자(振動子)를 이용(利用)한 점집동초음파탐촉자(点集東超音波探觸子)의 특성)

  • Han, E.K.;Hwang, S.T.;Lee, B.S.;Park, J.S.;Ogura, Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.12 no.2
    • /
    • pp.7-13
    • /
    • 1992
  • In this study, we examine the characteristics of beam and the effect of these characteristics on the flaw detection by using different type of two transducers, which are PZT and PVDF film transducer. Consequently, the detection of infinitesimal flaw is more possible than PZT, since it has beam width at focus of $60%{\sim}65%$ in contrast with PZT's. Moreover we can know PVDF transducer has superiority in detecting ability for sub-surface flaw detection in view of its acoustic impedance is near to water's and its focusing range is narrower than PZT's as $65{\sim}85%$ because it has spherical surface.

  • PDF

Experimental investigation of magnetic-mount PZT-interface for impedance-based damage detection in steel girder connection

  • Ryu, Joo-Young;Huynh, Thanh-Canh;Kim, Jeong-Tae
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.3
    • /
    • pp.237-253
    • /
    • 2017
  • Among various structural health monitoring technologies, impedance-based damage detection has been recognized as a promising tool for diagnosing critical members of civil structures. Since the piezoelectric transducers used in the impedance-based technique should be bonded to the surface of the structure using bonding layers (e.g., epoxy layer), it is hard to maintain the as-built condition of the bonding layers and to reconfigure the devices if needed. This study presents an experimental investigation by using magnetically attached PZT-interface for the impedance-based damage detection in bolted girder connections. Firstly, the principle of the impedance-based damage detection via the PZT-interface device is outlined. Secondly, a PZT-interface attachment method in which permanent magnets are used to replace the conventional bonding layers is proposed. Finally, the use of the magnetic attraction for the PZT-interface is experimentally evaluated via detecting the bolt-loosening events in a bolted girder connection. Also, the sensitivity of impedance signatures obtained from the PZT-interface is analyzed with regard to the interface's material.

High $T_c/E_c$ PMN-PZT Single Crystals for Piezoelectric Actuator and Transducer Applications : Bridgman PMN-PT Crystals vs. SSCG PMN-PZT Crystals (압전 액츄에이터와 트랜스듀서용 고효율 압전 PMN-PZT 단결정 개발 : 브릿지만법 PMN-PT 단결정과 고상단결정 성장법 PMN-PZT 단결정 비교)

  • Lee, Ho-Yong;Lee, Sung-Min;Kim, Dong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.17-17
    • /
    • 2009
  • Piezoelectric single crystals in the ternary MPB PMN-PZ-PT system with high $T_cs$ ($T_c$ > $200\sim300^{\circ}C$) and $E_cs$($E_c$>5~10 kV/cm) were fabricated by the cost-effective solid-state crystal growth (SSCG) technique. Chemically uniform PMN-PZT single crystals were successfully grown up to 60 mm by the SSCG method and their dielectric and piezoelectric properties characterized. Compared to Bridgman PMN-PT single crystals, the high $T_c/E_c$ PMN-PZT single crystals were found to exhibit a much wider usage range with respect to electric field as well as temperature, and thus become best candidates for medical transducers, actuators, and naval applications.

  • PDF

Development of High Frequency pMUT Based on Sputtered PZT

  • Lim, Un-Hyun;Yoo, Jin-Hee;Kondalkar, Vijay;Lee, Keekeun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2434-2440
    • /
    • 2018
  • A new type of piezoelectric micromachined ultrasonic transducer (pMUT) with high resonant frequency was developed by using a thin lead zirconate titanate (PZT) as an insulation layer on a floating $10{\mu}m$ silicon membrane. The PZT insulation layer facilitated acoustic impedance matching at active pMUT, leading to a high performance in the acoustic conversion property compared with the transducer using $SiO_2$ insulation layer. The fabricated ultrasonic devices were wirelessly measured by connecting two identical acoustic transducers to two separate ports in a single network analyzer simultaneously. The acoustic wave emitted from a transducer induced a $3.16{\mu}W$ on the other side of the transducer at a distance of 2 cm. The transducer performances in terms of device diameters, PZT thickness, annealings, and different DC polings, etc. were investigated. COMSOL simulation was also performed to predict the device performances prior to fabrication. Based on the COMSOL simulation, the device was fabricated and the results were compared.