• 제목/요약/키워드: PZT 연화

검색결과 2건 처리시간 0.015초

정적 하중하의 굽힘 압전 복합재료 작동기의 작동 성능 (Actuating Performance of a Bending Piezoelectric Composite Actuator with a Thin Sandwiched PZT Plate under Static Loads)

  • 우성충;박기훈;구남서
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1231-1236
    • /
    • 2007
  • This study presents the static and dynamic actuating performances of a bending piezoelectric actuator with a thin sandwiched PZT plate under a static load. The stored elastic energy within the actuators which occurs during a curing process is obtained through a flexural bending test. An actuating performance is evaluated in terms of an actuating displacement at the simply supported condition. The results reveal that an actuator that consists of a top layer having a high elastic modulus and a low coefficient of thermal expansion exhibits a better performance than the rest of actuators due to the formation of the large stored elastic energy within the actuator system. When actuators are excited at the alternating current voltage, the effect of PZT ceramic softening results in a slight reduction in the resonance frequency of each actuator as the applied electric field increases. It is thus suggested that the static and dynamic actuating characteristics of bending piezoelectric actuators with a thin sandwiched PZT plate should be simultaneously considered in controlling their performances.

  • PDF

굽힘 압전 복합재료 작동기의 하중 특성 (Load Capability in a Bending Piezoelectric Composite Actuator with a Thin Sandwiched PZT Plate)

  • 우성충;구남서
    • 대한기계학회논문집A
    • /
    • 제31권8호
    • /
    • pp.880-888
    • /
    • 2007
  • This article describes the load capability of bending piezoelectric actuators with a thin sandwiched PZT plate in association with the stored elastic energy induced by an increased dome height after a curing process. The stored elastic energy within the actuators is obtained via a flexural mechanical bending test. The load capability is evaluated indirectly in terms of an actuating displacement with a load of mass at simply supported and fixed-free boundary conditions. Additionally, a free displacement under no load of mass is measured for a comparison with an actuating displacement. The results reveal that an actuator with a top layer having a high elastic modulus and a low coefficient of thermal expansion exhibits a better performance than the rest of actuators in terms of free displacement as well as actuating displacement due to the formation of the large stored elastic energy within the actuator system. When actuators are excited at AC voltage, the actuating displacement is rather higher than the free displacement for the same actuating conditions. In addition, the effect of PZT ceramic softening results in a slight reduction in the resonance frequency of each actuator as the applied electric field increases. It is thus suggested that the static and dynamic actuating characteristics of bending piezoelectric composite actuators with a thin sandwiched PZT plate should be simultaneously considered in controlling the performance.