• Title/Summary/Keyword: PWM DC-DC converter

Search Result 734, Processing Time 0.027 seconds

Grid-tied Power Conditioning System for Fuel Cell Composed of Three-phase Current-fed DC-DC Converter and PWM Inverter

  • Jeong, Jong-Kyou;Lee, Ji-Heon;Han, Byung-Moon;Cha, Han-Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.255-262
    • /
    • 2011
  • This paper proposes a grid-tied power conditioning system for fuel cell, which consists of three-phase current-fed DC-DC converter and three-phase PWM inverter. The three-phase current-fed DC-DC converter boosts fuel cell voltage of 26-48 V up to 400 V with zero-voltage switching (ZVS) scheme, while the three-phase PWM(Pulse Width Modulation) inverter controls the active and reactive power supplied to the grid. The operation of the proposed power conditioning system with fuel cell model is verified through simulations with PSCAD/EMTDC software. The feasibility of hardware implementation is verified through experimental works with a laboratory prototype with 1.2 kW proton exchange membrane (PEM) fuel cell stack. The proposed power conditioning system can be commercialized to interconnect the fuel cell with the power grid.

A Design of Interleaved DC-DC Buck-boost Converter with Improved Conduction Loss of Switch (스위치 전도 손실을 개선한 인터리브 DC-DC 벅-부스트 컨버터 설계)

  • Lee, Joo-Young;Joo, Hwan-Kyu;Lee, Hyun-Duck;Yang, Yil-Suk;Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.14 no.3
    • /
    • pp.250-255
    • /
    • 2010
  • The interleaved power management IC(PMIC) with DTMOS(Dynamic Threshold voltage MOSFET) switching device is proposed in this paper. The buck-boost converter used to provide the high output voltage and low output voltage for portable applications. Also we used the PWM(Pulse Width Modulation) control method for high power efficiency at high current level. DTMOS with low on-resistance is designed to decrease conduction loss. The interleaved PMIC to reduce output ripple. And step-down DC-DC converter in stand-by mode below 1mA is designed with LDO in order to achive high efficiency.

A 48V-400V Non-isolated Bidirectional Soft-switching DC-DC Converter for Residential ESS (PPS 제어기법을 적용한 48V-400V 비절연 양방향 DC-DC컨버터)

  • Jeong, Hyeon-Ju;Kwon, Min-Ho;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.3
    • /
    • pp.190-198
    • /
    • 2018
  • This paper proposes a nonisolated, bidirectional, soft-switching DC - DC converter with PWM plus phase shift (PPS) control. The proposed converter has an input-parallel/output-series configuration and can achieve the interleaving effect and high voltage gains, resulting in decreased voltage ratings in all related devices. The proposed converter can operate under zero-voltage switching (ZVS) conditions for all switches in continuous conduction mode. The power flow of the proposed converter can be controlled by changing the phase shift angle, and the duty is controlled to balance the voltage of four high voltage side capacitors. The PPS control device of the proposed converter is simple in structure and presents symmetrical switching patterns under a bidirectional power flow. The PPS control also ensures ZVS during charging and discharging at all loads and equalizes the voltage ratings of the output capacitors and switches. To verify the validity of the proposed converter, an experimental investigation of a 2 kW prototype is performed in both charging and discharging modes under different load conditions and a bidirectional power flow.

Double Two Switch Forward Transformer-Linked Soft-Switching PWM DC-DC Power Converter with Tapped Inductor Filters

  • Moisseev Serguei;Koudriavtsev Oleg;Hiraki Eiji;Nakamura Mantaro;Nakaoka Mutsuo;Hamada Satoshi
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.193-197
    • /
    • 2001
  • This paper presents a novel circuit topology of the double two-switch forward type high frequency transformer linked soft-switching PWM DC-DC power converter with tapped inductor filters that can operate under a condition of the low peak voltage stress across the power semiconductor devices and lowered peak current stress through the transformer for some high power applications. This circuit topology of an interleaved two-switch forward soft-switching power converter is proposed in the order to minimize an idle circulating current due to the tapped inductor filter without of any additional active auxiliary resonant-assisted snubber circuits, such as active resonant DC link snubbers and AC link snubbers, active resonant commutation leg link snubbers. The unique advantages of this power converter are less power circuit components and power semiconductor devices, constant frequency PWM scheme, cost effective configuration and wider soft-switching PWM operation range under PWM power regulations load variations. The practical effectiveness of the proposed soft-switching converter circuit topology is tested by simulations and is proved by experimental results received from the 500W-100kHz breadboard setup.

  • PDF

DCM DC-DC Converter for Mobile Devices (모바일 기기용 DCM DC-DC Converter)

  • Jung, Jiteck;Yun, Beomsu;Choi, Joongho
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.319-325
    • /
    • 2020
  • In this paper, a discontinuous-conduction mode (DCM) DC-DC buck converter is presented for mobile device applications. The buck converter consists of compensator for stable operations, pulse-width modulation (PWM) logic, and power switches. In order to achieve small hardware form-factor, the number of off-chip components should be kept to be minimum, which can be realized with simple and efficient frequency compensation and digital soft start-up circuits. Burst-mode operation is included for preventing the efficiency from degrading under very light load condition. The DCM DC-DC buck converter is fabricated with 0.18-um BCDMOS process. Programmable output with external resistors is typically set to be 1.8V for the input voltage between 2.8 and 5.0V. With a switching frequency of 1MHz, measured maximum efficiency is 92.6% for a load current of 100mA.

Analysis of Step-up AC/DC Converter (승압형 AC/DC 전력 변환기의 해석)

  • Park, S.Y.;Park, I.G.;Kang, Y.S.;Park, J.K.
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.340-343
    • /
    • 1990
  • Recently, Power Electronics system increase makes harmonics and low input power factor problem. In this paper present new analysis method of PWM Boost AC/DC Converter. This PWM AC/DC Converter is capability of unity power factor, control of DC side voltage level, generation, and near sinusoidal current in 3-phase line. The control of this type of converter is widely discussed. And this paper propose new phase convert function and analysis in steady state of system to obtain amplitude and phaser of switching function. This switching function is general solution and it can use in high power approach. And this control method show the clear meaning of control variable. This paper propose new analysis method of Boost AC/DC Converter of steady state and 3-phase 2KW experimental system show its validity.

  • PDF

Development of PWM Converter System for Solar Cell Silicon Ingot Glowing 120kW 3kA (태양전지 실리콘 결정 성장용 120kW 3kA PWM 컨버터 시스템 개발)

  • Kim, Min-Huei;Park, Young-Sik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.3
    • /
    • pp.125-130
    • /
    • 2014
  • This paper is research result for a development of solar cell silicon ingot glowing(SCSIG) PWM converter system for 120[kW] 3[kA]. The system include 3-phase AC-DC rectifier diode converter of input voltage AC 460[V] and 60[Hz], DC-AC single phase full bridge PWM inverter of high frequency, AC-DC single-phase full wave rectifier using center-tapped of transformer for low voltage 50[V] and large current 3,000[A], carbon resistor load 0.2 [$m{\Omega}$]. PWM switching frequency for IGBT inverter control set 15KHz. The suggested researching contents are designed data sheets of power converter system, PSIM simulation, operating characteristics and analysis results of developed SCSIG system.

Development of PWM Converter System for Sapphire Silicon Ingot Glowing of 80kW 10kA (사파이어 실리콘 결정 성장용 80kW 10kA PWM 컨버터 시스템 개발)

  • Kim, Min-Huei;Park, Young-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.11
    • /
    • pp.33-41
    • /
    • 2014
  • This paper is research result for a development of sapphire silicon ingot glowing(SSIG) PWM converter system for 80kW 10kA. The system include 3-phase AC-DC diode rectifier of input voltage AC 380V and 60Hz, DC-AC single phase full bridge PWM inverter of high frequency, AC-DC single-phase full wave rectifier using center-tapped of transformer for low voltage 8.0V and large current 10,000A of output specification, tungsten resistor load 0.1[$m{\Omega}$]. PWM switching frequency for IGBT inverter control set 30kHz. The suggested researching contents are designed data sheets of power converter system, PSIM simulation, operating characteristics and analysis results of developed SSIG system. This paper propose

Dynamic Analysis and Control Loop Design of ZVS-FB PWM DC/DC Converter (ZVS-FB PWM DC/DC 변환기의 동특성 해석 및 제어기 설계)

  • 이득기;윤길문;차영길;김흥근
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.231-239
    • /
    • 1998
  • This paper presents the dynamic analysis and control loop design of a zero voltage switching full bridge (ZVS-FB) PWM DC/DC converter. The small-signal model is derived incorporating the effects of phase shift control and the utilization of transformer leakage inductance and power FET junction capacitance to achieve zero voltage resonant switching. These effects are modeled by introducing additional feedforward and feedback terms for duty cycle modulation. Based on the results of the small-signal analysis, the control loop is designed using a simple two-pole one-zero compensation circuit. To show the validity of the design procedures, the small signal analysis of the closed loop system is carried out and the potential of the zero voltage switching and the superiority of the dynamic characteristics are verified through the experiment with a 2 kW prototype converter.

  • PDF

Fault Diagnosis Method of Voltage Sensor in 3-phase AC/DC PWM Converters

  • Kim, Hyung-Seop;Im, Won-Sang;Kim, Jang-Mok;Lee, Dong-Choon;Lee, Kyo-Beum
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.3
    • /
    • pp.384-390
    • /
    • 2012
  • This paper proposes a fault diagnosis method of the line-to-line voltage sensors in 3-phase AC/DC pulse width modulation (PWM) converters. The line-to-line voltage sensors are an essential device to obtain the information of the grid voltages for controlling the 3-phase AC/DC PWM converters. If the line-to-line voltage sensors are mismeasured by various faults, the voltage sensors can obtain wrong information of the grid voltage. It has an adverse effect on the control of the converter. Therefore, the converter causes the unbalance input AC current and the DC-link voltage ripple in the 3-phase AC/DC PWM converter. Hence, fast fault detection and fault tolerant control are needed. In this paper, the fault diagnosis method is proposed and verified through simulations and experiments.