• 제목/요약/키워드: PWM(Power Width Modulation)

검색결과 490건 처리시간 0.024초

Zero-Voltage-Transition Pulse-Width-Modulation Boost 컨버터의 전달 특성 (Transfer Characteristics of the Zero- VoltageTransition Pulse-Width - Modulation Boost Converter)

  • 김진성;박석하;김양모
    • 전자공학회논문지B
    • /
    • 제33B권10호
    • /
    • pp.148-156
    • /
    • 1996
  • Increasing the switching frquency is essential to achieve the high density of switched mode power supplies, but this leads to the increase of switching losses. A number of new soft switching converters have been presented ot reduce switching losses, but most of them may have some demerits, such as the increase of voltage/current stresses and high conduction losses. To overcome these problems, the ZVT-PWM converter has recently been presented. in this paper, the operation characteristics of the ZVT-PWM boost converter is analyzed, and the steady-states (DC) and small-signal model of this converter are derived and analyzed, and then the transfer functions of this converter are derived. The transfer functions of ZVT-PWM boost converter are similar to those of the conventional PWM boost converter, but the transfer characteristics are affecsted by te duty ratio and the switching frequency.

  • PDF

대화면 LCD TV를 위한 고효율 및 저가형 PCM 방식 백라이트 인버터 (High efficiency & Low cost PCM Backlight Inverter for large Area LCD TV)

  • 장영수;노정욱;홍성수;사공석진;김종덕;이효범;한상규
    • 전력전자학회논문지
    • /
    • 제12권6호
    • /
    • pp.441-448
    • /
    • 2007
  • 대화면 LCD TV (40인치 이상)에서 LCD 인버터의 가격 경쟁력을 위해 인버터 하나로 다수의 램프를 병렬 구동하면서 Two Stage System 구조인 IP(Integrated Power) Board 형태의 인버터 회로가 많이 사용되고 있다. 본 논문에서는 기존 IP Board의 인버터 구동 방식인 Pulse Width Modulation (PWM) 제어 방식을 분석하고, 문제점으로 제기되었던 Half-Bridge단 스위치의 하드 스위칭과 과도한 Circulating Energy 문제를 해결한 새로운 Pulse Count Modulation (PCM) 방식을 적용한 인버터를 제안하고 이론 및 실험적 검증을 통해 제안된 방식의 우수성을 확인하였다.

Experimental Study on Conducted EMI Mitigation in SMPS using a Novel Spread Spectrum Technique

  • Premalatha, L.;Raghavendiran, T.A.;Ravichandran, C.
    • Journal of Power Electronics
    • /
    • 제13권4호
    • /
    • pp.619-625
    • /
    • 2013
  • Switched mode power supplies (SMPS) are power electronic circuits extensively used in a wide range of applications. High frequency switching operation of SMPS causes electromagnetic emissions and has the potential to interfere with system operation, which in turn has an impact on system performance. This makes electromagnetic compatibility (EMC) an important concern. In this paper, a new and simple spread spectrum technique is proposed by modulating chaotic pulse position modulation (CPPM) and pulse width modulation (PWM). The resulting CPWM is implemented to reduce the conducted EMI in SMPS. The proposed method is found to be effective in reducing conduction EMI. The effectiveness and simplicity of the proposed method on spreading those dominating frequencies is compared to the EMI mitigation technique using an external chaotic generator. Finally, the levels of conductive EMI with standard PWM, CPWM with an external chaos generator and the proposed method are experimentally verified to comply with the CISPR 22A regulations. The results confirm the effectiveness of the proposed method.

A NOVEL ZVS-CV PWM AC-DC CONVERTER

  • Yan, Baiping;Chen, Zhiming;Liu, Jian
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.709-712
    • /
    • 1998
  • A new ZVS-CV PWM converter with power factor correction (PFC) function is presented in this paper. The new topology is a integration of a boost converter and a ZVS-CV topology in a single power conversion stage. The new converter can be regulated in pulse-width modulation (PWM) by universal integrated control circuits. Some design considerations are given in detail. A laboratory prototype has been implemented to show the feasibility of the approach and the analysis.

  • PDF

Variable Structure PWM Controller for Highly Efficient PV Inverters

  • Oh, Seong-Jin;SunWoo, Myoung-Ho
    • Journal of Power Electronics
    • /
    • 제9권6호
    • /
    • pp.866-873
    • /
    • 2009
  • In general, the output voltage level of a PV array varies widely at various irradiances and temperatures. The MPP (Maximum Power Point) range of a medium- or high-power PV PCS is normally 450~830Vdc or 300~600Vdc. This means the PV PCS should operate in a wide range of modulation indexes. The PV PCS should satisfy the harmonic current requirement that the TDD (Total demand distortion) shall not exceed 5%. This paper proposes a new PWM control method for a medium- or high-power PV PCS which increases the efficiency of power conversion in all operation ranges with acceptable harmonic ripple currents. This paper compares and analyzes appropriate PWM schemes for the PV PCS in the view points of conversion efficiency and current harmonics.

Series Load Resonant Soft-Switching PWM High Frequency Inverter with Auxiliary Active Edge-Resonant Snubber

  • Saha, Bishwajit;Kim, Hun-Ho;Han, Ho-Dong;Kwon, Soon-Kurl;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.278-280
    • /
    • 2006
  • In this paper, a novel type of auxiliary active snubbingcircuit assisted quasi-resonant soft-switching pulse width modulation inverter is proposed for consumer induction heating equipments. The operation principle of this high frequency inverter is described using switching modes and equivalent circuits. This newly developed series resonant high frequency inverter can regulate its high frequency output AC power under a principle of constant frequency active edge resonant soft- switching commutation by asymmetrical PWM control system. The high frequency power regulation and actual power conversion efficiency characteristics of consumer induction heating (IH) products using the proposed soft-switching pulse width modulation (PWM) series load resonant high frequency inverter evaluated. The practical effectiveness and operating performance of high frequency inverter are discussion on the basis of simulation and experimental results as compared with the conventional soft-switching high frequency inverter.

  • PDF

최소 손실 불연속 변조 기법에 따른 2레벨 3상 전압원 인버터의 직류단 전압 맥동 분석 (DC-Link Voltage Ripple Analysis of Minimum Loss Discontinuous PWM Strategy in Two-Level Three-Phase Voltage Source Inverters)

  • 이준혁;박정욱
    • 전력전자학회논문지
    • /
    • 제26권2호
    • /
    • pp.120-126
    • /
    • 2021
  • DC-link capacitors are one of the main components in two-level three-phase voltage source inverters (VSIs); they provide the pulsating input current and stabilize the vacillating DC-link voltage. Ideally, the larger the capacitance of DC-link capacitors, the better the DC-link voltage stabilizes. However, high capacitance increases the cost and decreases the power density of VSI systems. Therefore, the capacitance should be chosen carefully on the basis of the DC-link voltage ripple requirement. However, the DC-link voltage ripple is dependent on the pulse-width modulation (PWM) strategy. This study especially presents a DC-link voltage ripple analysis when the minimum loss discontinuous PWM strategy is applied. Furthermore, an equation for the selection of the minimum capacitance of DC-link capacitors is proposed. Experimental results with R-L loads are also provided to verify the effectiveness of the presented analysis.

산성이온수 농도제어를 위한 Microprocessor를 이용한 PWM 제어 (The PWM Control Which used Microprocessor for Intensity Control of Acid Ion Water)

  • 권윤중;남상엽
    • 전자공학회논문지
    • /
    • 제50권7호
    • /
    • pp.269-274
    • /
    • 2013
  • 전해 산성이온수는 알칼리성 이온수에 비해 응용분야가 음용을 목적으로 하는 알칼리이온수와 많이 다르게 이용되고 있으며 ph 농도에 따라 강산성인 경우 잔류염소에 의한 살균 목적의 소독제로 사용되고, 중산성인 경우 세척과 세안으로 사용하고, 약산성인 경우 식재료와 혼합하여 요리에 널리 사용할 수 있다. 이런 산성이온수를 생성하기 위해서는 물을 전기분해 하여 사용하는데 전기분해 하는 과정에서 염소가스와 수산화나트륨 등의 물질로 살균력을 가지며, 전기분해시 +전극 쪽으로 -이온을 띤 염소, 인, 유황 등의 유기물이 모여져 산성이온수를 만든다. 또한 산성수와 알칼리수를 분리하기 위해서 격막을 사용했다. ph 농도변화의 구현방법은 Microprocessor를 이용하여 강산성에서 약산성 사이의 ph 농도를 PWM(pulse width modulation) 제어로 3종류의 PWM 전압을 전해조 전극에 인가하여 PWM제어에 의한 연속적으로 농도가 조절된 산성수가 생성되게 구현하였다.

전압벡터의 근사 전압함수를 이용한 PMSM의 DTC-PWM 제어방식 (A DTC-PWM Control Scheme of PMSM using an Approximated Voltage Function of Voltage Vector)

  • 곽윤창;이동희
    • 전력전자학회논문지
    • /
    • 제20권5호
    • /
    • pp.421-428
    • /
    • 2015
  • An advanced direct torque control (DTC) with pulse width modulation (PWM) method is presented in this paper. The duty ratio calculation of the selected voltage vector is based on the voltage functions of the selected voltage vector according to the sector angle. The proposed DTC uses a conventional DTC scheme with six sector divisions and switching rules. However, the winding voltages are supplied by the PWM approach. Furthermore, the duty ratio of the switching voltage vector is determined by the flux, torque error, and motor speed. The base voltage that shall determine the duty ratio can be calculated by approximate voltage functions according to the voltage angle. For the calculation of base voltages, second-order quadratic functions are used to express the output voltage of the selected voltage vector according to voltage angle. The coefficients for the second-order quadratic functions are selected by the voltage vector, which is determined by the switching rules of the DTC. In addition, the voltage functions are calculated by the coefficients and voltage angle between the voltage vector and rotor position. The switching voltages from the calculated duty ratio can supply the proper torque and flux to reduce the ripple and error. The proposed control scheme is verified through practical experimental comparisons.

Asymmetrical PWM for Harmonics Reduction and Power Factor Improvement in PWM AC Choppers Using Bee Colony Optimization

  • Sanjit, Panithi;Aurasopon, Apinan
    • Journal of Power Electronics
    • /
    • 제15권1호
    • /
    • pp.227-234
    • /
    • 2015
  • This paper presents the application of bee colony optimization (BCO) to obtain the optimal switching angles for single phase PWM AC choppers. The optimal switching angles are found in the region of 0-${\pi}$ based on the asymmetrical PWM technique. This PWM process results in improvements of the total harmonic distortion of the output voltage and in the input power factor. Simulation and experimental results are compared with the conventional PWM to verify the performance of the proposed PWM process.