• Title/Summary/Keyword: PWHT Cracking

Search Result 18, Processing Time 0.026 seconds

Study on Corrosion Characteristics and Stress Corrosion Cracking of the Weldment for HT-60 Steel in Synthetic Seawater

  • Na, Eui-Gyun;Koh, Seung-Ki;Oh, Seok-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.152-158
    • /
    • 2000
  • The contents of this paper include the evaluation of corrosion characteristics and the behaviour of stress corrosion cracking (SCC) for the weldment and post weld heat treatment (PWHT) specimen and parent of HT -60 steel using a slow strain rate test (SSRT) in synthetic seawater. Corrosion characteristics were obtained from the polarization curves by potentiostat, and SCC phenomena were evaluated through the parameters such as reduction of area and time to failure by comparing the experimental results in corrosive environment with those obtained in air. Corrosion rate of the weldment was the fastest, followed by parent and PWHT specimen. SCC phenomena between the weldment of HT-60 steel and synthetic seawater were shown. Besides, SCC was dependent upon the pulling speed greatly. Maximum severity of SCC was obtained at a speed of $10^{-6}mm/min$, whereas SCC could not be seen almost at $10^{-4}mm/min$. The resistance to SCC for PWHT specimen was improved considerably compared that of the weldment at $10^{-6}mm/min$. In case of SCC failure, it was verified from SEM examination that brittle mode and lots of pits could be seen at the fractured region near the surface of the specimen.

  • PDF

Cr-Mo鋼 熔接熱影響部의 破壞靭性과 熔接入熱量에 관한 硏究 II

  • 임재규;정세희
    • Journal of Welding and Joining
    • /
    • v.5 no.2
    • /
    • pp.9-16
    • /
    • 1987
  • Post weld heat treatment (PWHT) is carried out to increase the fracture toughness in heat affected zone(HAZ) and remove the residual stress. There occur some problems such as toughness decreement and stress relief cracking(SRC) in the coarse grained HAZ subjected to the effect of tempering treatment. Especially, embitterment of structure directly relates to the mode of fracture and is appeared as the difference of fracture surface, that is, grain boundary failure. Therefore, in this paper, PWHT was carried out under the stress of 0, 10, 20 and $30kg/cm^2$ to simulate residual stress in HAZ welded by heat input of 10, 30 and 40KJ/cm. Applied stress in weld HAZ during PWHT assisted precipitin of over saturated alloying element in the structure, and grain boundary failure according to welding heat input didn't almost appear at the heat input of 10 KJ/cm, but it appeared from being the applied stress of $30kg/cm^2$ at $30KJ/cm and 20kg/mm^2$ at 40KJ/cm.

  • PDF

Study on the hydrogen embrittlement crack susceptibility of stainless steel overlaid weld metal (1) (스테인레스강 Overlay용접부의 수소취화 균열감수성에 관한 연구 1)

  • 이영호
    • Journal of Welding and Joining
    • /
    • v.8 no.3
    • /
    • pp.39-52
    • /
    • 1990
  • The research is to insure the soundness of the stainless steel overlaid weld metal(21/4Cr-IMo steel + SUS 309L) for a pressure vessel application. Detail studies were conducted for the PWHT influence on the micrstructure and intergranular corrosion characteristics of the overlaid weld metal as well as initiation of hydrogen embrittlement crack(or Disbonding) when welded metal are exposed to the hydrogen atmosphere. Hydrogen was experimentally charged to the overlaid weld metal in order to study PWHT effect on the susceptibility of hydrogen embrittlement crack. The results of this research are as follows: 1. At the bond region, austenite grain of the stainless steel side became coarsed and Cr23C6 type carbide was precipitated at the coarsed austenitic grain boundaries. Intergranular Corrosion width(by Straiss test) increased with increasing PWHT temperature and PWHT time.

  • PDF

Diagnosis of cracking in T23 welds for power plant application (보일러용 고강도 T23강의 용접부 손상 원인 분석)

  • Park, Ki-Duck;Ahn, Jong-Suk;Shin, Dong-Hyeok;Lee, Chang-Hee
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.61-61
    • /
    • 2009
  • This paper has been performed in order to figure out the reason of failure in T23 weldments used for boiler tube at 550 $^{\circ}C$. Defects such as cracks and cavities occurred in CGHAZ (coarse grain heat-affected-zone) and multi pass of weld metal, and these crack propagated along grain boundary. Microstructure evolution such as grain growth and carbide precipitation was investigated by optical microscope (OM), transmission electron microscope(TEM). Moreover, Auger electron spectroscope (AES) was employed in order to examine segregation along the grain boundaries. There is significant difference in grain size and precipitation distribution in the region where cracking took place. In addition, sulfur segregation was observed. Based on the results of this investigation, it has been possible to establish that this type of cracks were consistent with reheat cracking and creep damage. Selection of optimal filler metal, heat input, and PWHT temperature is required for prevention in order to avoid this type of cracking.

  • PDF

PWHT Cracking Susceptibility in the Weld Heat-Affected Zone of Reduced Activation Ferritic/Martensitic Steels (핵융합로 구조용 저방사화강의 용접열영향부 후열처리 균열 감수성)

  • Lee, Jinjong;Moon, Joonoh;Lee, Chang-Hoon;Park, Jun-Young;LEE, Tae-Ho;Hong, Hyun-Uk;Cho, Kyung-Mox
    • Journal of Welding and Joining
    • /
    • v.34 no.6
    • /
    • pp.47-54
    • /
    • 2016
  • Post-Weld Heat Treatment (PWHT) cracking susceptibility in the weld heat-affected zone (HAZ) of reduced activation ferritic-martensitic (RAFM) steels was evaluated through stress-rupture tests. 9Cr-1W based alloys including different C, Ta and Ti content were prepared. The coarse grained heat-affected zone (CGHAZ) samples were simulated with welding condition of 30 kJ/cm heat input. CGHAZ samples consisted of martensite matrix. Stress rupture experiments were carried out using a Gleeble simulator at temperatures of $650-750^{\circ}C$ and at stress levels of 125-550 MPa, corresponding to PWHT condition. The results revealed that PWHT cracking resistance was improved by Ti addition, i.e., Ti contributed to the formation of fine and stable MX precipitates and suppression of coarse M23C6 carbides, resulting in improvement of stress rupture ductility. Meanwhile, rupture strength increased with increasing solute C content.

Evaluation on the Characteristics of Stress Corrosion Cracking for the Weldment of HT-60 Steel under Applied Potentials (인가전위 하에서 HT-60강 용접부의 SCC특성 평가)

  • Na, Ui-Gyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.896-903
    • /
    • 2002
  • The susceptibility of SCC for the weldment and PWHT specimens of HT-60 steel was evaluated using a slow strain rate method under applied potential by means of the potentiostat in synthetic seawater. In case of the parent, anodic polarization voltage was inappropriate in elongating the time to failure(TTF). -0.8V corresponding to cathodic protection range is most effective in improving the SCC resistance against corrosive environment. In case of the weldment, the values of reduction of area(ROA) and TTF at -0.68V corresponding to cathodic polarization value were 45.2% and 715,809sec which were the largest and longest life among other applied potentials. Those were vise versa at -1.1V. In case of the PWHT specimens, TTF and ROA at -0.68V was longest and largest like the weldment. Besides, PWHT is effective in prolonging the time to failure of the welded off-shore structure due to softening of effect. Regardless of the weldment and PWHT specimen, as corrosion rate gets higher, TTF becomes shorter and deformation behaviour for the weldment and PWHT specimen at -1.1V was shown to be irregular. Finally, it was found that specimens showed brittle fracture at -1.1V, but more ductile fracture accompanying the micro-cracks at applied potential of -0.68V.

Study on PWHT embrittlement of weld HAZ in Cr-Mo steel (Cr-Mo 鋼 溶接熱影響部의 溶接後熱處理 脆化에 관한 硏究)

  • 임재규;정세희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.314-321
    • /
    • 1987
  • Post weld heat treatment (PWHT) of weldment of the low alloy Cr-Mo steel, in general, is carried out not only to remove residual stress and hydrogen existing in weldment but to improve fracture toughness of weld heat affected zone (HAZ). There occur some problems such as toughness decrement and stress relief cracking (SRC) in the coarse grained region of weld HAZ when PWHT is practiced. Especially, embrittlement of structure directly relates to the mode of fracture and is appeared as the difference of fracture surface such as grain boundary failure. Therefore, in this paper, the effect of heating rate on PWHT embrittlement under the various kinds of stresses simulated residual stress in weld HAZ was evaluated by COD fracture toughness test and observation of fracture surface. Fracture toughness of weld HAZ decreased with increment of heating rate under no stress, but it was improved to increment of heating rate under the stress. Grain boundary failure didn't almost appear at the heating rate of 600.deg.C/hr but it appeared from being the applied stress of 294 MPa at 220.deg.C/hr and 196 MPa at 60.deg.C/hr.

Study on Fracture Toughness and Heat Input in Weld HAZ of Cr-Mo Steel (I) (welding structure) (Cr-Mo강 용접열영향부의 파괴인성과 용접입열량에 관한 연구(I) (HAZ 고유조직을 중심으로))

  • 임재규;정세희
    • Journal of Welding and Joining
    • /
    • v.2 no.2
    • /
    • pp.54-61
    • /
    • 1984
  • Construction of welding structure is greatly dependent upon welding heat cycle. Fracture toughness is decreased remarkablely due to coarse grained HAZ and inequal residual stress of three dimensions to originate in welding. Post weld heat treatment(PWHT) is carried out to increase the fracture toughness of HAZ and to remove the residual stress. There occur some problem such as toughness decrement and stress relief cracking(SRC) in the coarse grained HAZ subject to the effect of tempering treatment. Therefore, in this paper, the effect of heat inputs affecting cooling rate and PWHT under the no stress on fracture toughness were evaluated by crack opening displacement (COD), SEM and micro-hardness test. Experimental results are as follows; 1. Fracture toughness of weld HAZ is dependent upon weld heat cycle and it is decreased with increment of heat input, but the degree of improvement of fracture toughness after PWHT was linearly increased with heat input. 2. Hardness of the parent metal is not changed, but the softening of coarse grained HAZ is remarkable due to PWHT. 3. Fracture surface of as-weld show the perfect brittle fracture with the cleavage fracture, but after PWHT they appear the ductile fracture surface with dimple.

  • PDF

The Effect of PWHT on Fracture Toughness in HAZ of Cr-Mo Steel(II) (Cr-Mo鋼 熔接熱影響部 의 破壞靭性 에 미치는 熔接後 熱處理 의 影響 II)

  • 임재규;정세희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.1
    • /
    • pp.40-46
    • /
    • 1985
  • Some problems such as toughness decrement and stess relief cracking (SRC), many occur when post weld heat treatment (PWHT) is applied to remove residual stress adn hydrogen. In this paper PWHT was carried out under the stress of 0, 98, 196 and 294 MPa (0, 10, 20 and 30kgf/mm$^{2}$ each) to simulate residual stress in HAZ of Cr-Mo steel. The effect of applied stress during PWHT on fracture toughness was evaluated by COD fracture toughness test, micro-hardnes test and observation of SEM. The experimental results are as follows; (1) Fracture toughness of weld HAZ was improved by PWHT, but it decreased as heat treated under the stress. (2)Hardness ratio under the stress of 294MPa (30kg/mm$^{2}$) was lower and fracture toughness was decreased than that of the no stress. (3) Applied stress in weld HAZ during PWHT assisted precipitation of over saturated alloying elements in the structure, so fracture surface at the stress of 294MPa (30kg/mm$_{2}$) appeared the grain boundary failure possibly one of the reasons for PWHT embrittlenment.

A Study on Improvement of Fatigue Strength of Electrical Panel Weldments in Naval Vessels by Post Weld Treatment (함정용 배전반 용접부의 용접후처리 방법에 의한 피로강도 증대 효과에 관한 연구)

  • Kim, Myung-Hyun;Kang, Min-Su;Kang, Sung-Won
    • Journal of Welding and Joining
    • /
    • v.26 no.4
    • /
    • pp.55-60
    • /
    • 2008
  • Structural reliability of electrical panels installed in naval vessels is of critical importance from structural performance viewpoint. The panels may be exposed to vibration and fatigue loadings from internal and external sources and wave loading which cause fatigue cracking. In this study, common methods such as burr grinding and post weld heat treatment (PWHT), for the fatigue strength improvement of weldments are investigated. Burr grinding is carried out using a electric grinder in order to remove surface defects and improve the weld bead profile. And also PWHT is carried out for the purpose of removing residual. The effectiveness of the two post treatment methods is evaluated in terms of fatigue strength improvement of welded structures.