• 제목/요약/키워드: PWHT(post welded heat treatment)

검색결과 49건 처리시간 0.025초

A Study on the Post-Weld Heat Treatment Effect to Mechanical Properties and Hydrogen Embrittlement for Heating Affected Zone of a RE 36 Steel

  • Moon, Kyung-Man;Lee, Myung-Hoon;Kim, Ki-Joon;Kim, Jin-Gyeong;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • 제2권6호
    • /
    • pp.283-288
    • /
    • 2003
  • The cathodic protection method is being widely used in marine structural steel, however a high tensile steel like RE 36 steel for marine structural steel is easy to get hydrogen embrittlement due to over protection during cathodic protection as well as preferential corrosion of HAZ(Heating Affected Zone) part. In this paper, corrosion resistance and mechanical properties such as elongation and hydrogen embrittlement were investigated with not only in terms of electrochemical view but also SSRT(Slow Strain Rate Test) method with applied constant cathodic potential, analysis of SEM fractography in case of both As-welded and PWHT(Post-Weld Heat Treatment) of $550^{\circ}C$. The best effect for corrosion resistance was apparently indicated at PWHT of $550^{\circ}C$ and elongation was increased with PWHT of $550^{\circ}C$ than that of As-welded condition. On the other hand. Elongation was decreased with applied potential shifting to low potential direction which may be caused by hydrogen embrittlement, however the susceptibility of hydrogen embrittlement was decreased with PWHT of $550^{\circ}C$ than that of As-welded condition and Q.C(quasi cleavage) fracture mode was also observed significantly according to increasing of susceptibility of hydrogen embrittlement. Eventually it is suggested that an optimum cathodic protection potential range not causing hydrogen embrittlernent is from -770 mV(SCE) to -850 mV(SCE) in As-welded condition while is from -770 mV(SCE) to -875 mV(SCE) in PWHT of $550^{\circ}C$.

선박재료용 SS400강의 내식성에 대한 용접후 열처리효과에 관한 전기화학적 연구 (II) (An Electrochemical Study on the Effect of Post-Weld Heat Treatment about Corrosion Resistance Property of SS400 Steel for Ship`s Materials)

  • 김성종;김진경;문경만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권5호
    • /
    • pp.58-68
    • /
    • 2000
  • When SS400 steel was welded with low hydrogen type and ilmennite type welding, the effect of post-weld heat treatment(PWHT) was investigated with parameters such as micro vickers hardness, corrosion potential, polarization behaviors, galvanic current, Al anode generating current and Al anode weight loss etc. Hardness of each parts(HAZ, BM, WM) by PWHT in case of low hydrogen type and ilmennite type welding was lower than that of each parts by As-welded However hardness of WM area in case of low hydrogen type and ilmennite type welding was the highest among those three parts regardless of PWHT, Whereas in case of ilmennite type welding, WM area was the highest potential among these three parts on galvanic potential series with As-welded while BM area was the highest potential among these three parts by PWHT on the contrary. And in case of low hydrogen type welding, galvanic corrosion and micro cell corrosion of welding parts was decreased with PWHT. However, It was increased with PWHT in case of ilmennite type welding. Moreover Al anode generating current and anode weight loss in case of low hydrogen type was decreased by PWHT compared to As-wedled but, which was increased than that of As-welded in case of ilmennite type welding. Therefore, it is suggested that Corrosion resistance property in case of low hydrogen type welding is increased by PWHT. However its property was devreased with PWHT in case of ilmennite type welding.

  • PDF

Cr-Mo鋼 熔接熱影響部의 破壞靭性과 熔接入熱量에 관한 硏究 II

  • 임재규;정세희
    • Journal of Welding and Joining
    • /
    • 제5권2호
    • /
    • pp.9-16
    • /
    • 1987
  • Post weld heat treatment (PWHT) is carried out to increase the fracture toughness in heat affected zone(HAZ) and remove the residual stress. There occur some problems such as toughness decreement and stress relief cracking(SRC) in the coarse grained HAZ subjected to the effect of tempering treatment. Especially, embitterment of structure directly relates to the mode of fracture and is appeared as the difference of fracture surface, that is, grain boundary failure. Therefore, in this paper, PWHT was carried out under the stress of 0, 10, 20 and $30kg/cm^2$ to simulate residual stress in HAZ welded by heat input of 10, 30 and 40KJ/cm. Applied stress in weld HAZ during PWHT assisted precipitin of over saturated alloying element in the structure, and grain boundary failure according to welding heat input didn't almost appear at the heat input of 10 KJ/cm, but it appeared from being the applied stress of $30kg/cm^2$ at $30KJ/cm and 20kg/mm^2$ at 40KJ/cm.

  • PDF

SF45와 SM45C의 마찰용접 최적화에 따른 회전굽힘피로 특성 (Rotary Bending Fatigue Characteristics According to Optimal Friction Welding of SF45 to SM45C Steel Bars)

  • 공유식;박영환
    • 대한기계학회논문집A
    • /
    • 제41권3호
    • /
    • pp.219-224
    • /
    • 2017
  • 본 연구는 수송기계 축 등에 이용되는 캠 형상 부분만을 기존의 단조품인 SF45와 축 부분은 일반기계구조용 탄소강재인 SM45C를 직경 20 mm를 이용하여 이종 마찰용접을 수행하였다. 최적조건을 규명하기 위해 인장시험 등 용접품질과의 상관관계를 고찰하였고, 또한 최적조건에서 마찰용접 후 열처리를 시행하여 용접재(As-welded)와 후열처리재(PWHT)에 대한 회전굽힘 피로시험을 시행하였다. 결과적으로 두 이종재가 강한 혼합으로 계면에서도 개재물 및 산화막이 플래시로 토출되어 양호한 접합상태임을 확인하였다. 더욱이 모재(SF45)와 후열처리재의 피로한도 각각 180 MPa, 250 MPa로 나타났다. 이는 후열처리재가 SF45 모재에 비해 약 40 %의 피로수명이 향상되었음을 확인하였다.

수송차량 안전벨트용 모터축재의 마찰용접 최적화(1) - 기계적 특성 및 조직 (Optimization of Friction Welding for Motor Vehicle Safety Belts: Part 1-Mechanical Properties and Microstructure)

  • 공유식;안석환
    • 한국해양공학회지
    • /
    • 제26권1호
    • /
    • pp.64-69
    • /
    • 2012
  • Dissimilar friction welds were produced using 15-mm diameter solid bars of chrome molybdenum steel (KS SCM440) and carbon steel (KS SM20C) to investigate their mechanical properties. The main friction welding parameters were selected to ensure good quality welds on the basis of visual examination, tensile tests, Vickers hardness surveys of the bond area and HAZ, and macro-structure investigations. The specimens were tested as-welded and post-weld heat treated (PWHT). The tensile strength of the friction welded steel bars was increased to 100% of the SM20C base metal under the condition of a heating time of more than four seconds. Optimal welding conditions were n = 2,000 (rpm), HP = 60 (MPa), UP = 100 (MPa), HT = 5 (s),and UT = 5 (s), when the total upset length was 7.8 (mm). The hardness distribution peak of the friction welded joints could be eliminated using PWHT. The two different kinds of materials were strongly mixed to show a well-combined structure of macro-particles, with no molten material, particle growth, or defects.

21/4Cr-1Mo강 압력용기 Nozzle 용접이음부의 재열균열에 관한 연구 (A Study on the Reheat Crack around Welded Joint of Pressusre Vessel with 21/4Cr-1Mo Steel)

  • 방한서;김종명
    • Journal of Welding and Joining
    • /
    • 제18권2호
    • /
    • pp.227-227
    • /
    • 2000
  • Pressure vessels usually consist of main body and pipes which are connected with the main body. And as joining method of such main body and pipes, welding is carried out. After welding, welding residual stresses inevitably occur around welded joints. As residual stresses act harmfully on fatigue strength, corrosion and buckling strength of structure, PWHT is carried out for the purpose of removing the residual stress. But, during PWHT process, 2 ¼Cr-1Mo steels are frequently apt to generate reheat crack. For this reason, it is strongly needed to analyze and examine the mechanical behavior of welded joints before and after PWHT process. So, in this study, welded nozzle parts of pressure vessel where reheat cracks frequently occur are selected for examining the mechanism of crack-occurrence. (Received December 2, 1999)

$2\frac{1}{4}Cr-1Mo$강 압력용기 Nozzle 용접이음부의 재열균열에 관한 연구 (A Study on the Reheat Crack around Welded Joint of Pressure Vessel with $2\frac{1}{4}Cr-1Mo$ Steel)

  • 방한서;김종명
    • Journal of Welding and Joining
    • /
    • 제18권2호
    • /
    • pp.100-104
    • /
    • 2000
  • Pressure vessels usually consist of main body and pipes which are connected with the main body. And as joining method of such main body and pipes, welding is carried out. After welding, welding residual stresses inevitably occur around welded joints. As residual stresses act harmfully on fatigue strength, corrosion and buckling strength of structure, PWHT is carried out for the purpose of removing the residual stress. But, during PWHT process, $2\frac{1}{4}Cr-1Mo$ steels are frequently apt to generate reheat crack. For this reason, it is strongly needed to analyze and examine the mechanical behavior of welded joints before and after PWHT process. So, in this study, welded nozzle parts of pressure vessel where reheat cracks frequently occur are selected for examining the mechanism of crack-occurrence.

  • PDF

파이프 용접에서 기계적 잔류응력 이완법에 관한 연구 (A Study on Mechanical Stress Relleving in a Butt-Welded Pipe)

  • 양영수
    • Journal of Welding and Joining
    • /
    • 제14권1호
    • /
    • pp.75-81
    • /
    • 1996
  • The heat transfer and thermal stress-distribution were numerically determined by using the finite element method for a butt-welded pipe. A mechanical stress relieving(MSR) treatment which has been frequently used in the fabrication of pressure vessels instead of the post weld heat treatment (PWHT) was also simulated to investigate its effect of reducing the residual stress in the welded zone by a mechanical loading.

  • PDF

화력발전용 슈퍼 듀플렉스 스테인리스 강 조관재의 용접 후 열처리 조건이 국부부식 저항성에 미치는 영향 (Effects of post weld heat treatment conditions on localized corrosion resistance of super duplex stainless steel tube used for thermal power plant applications)

  • 이준호;박진성;조동민;홍승갑;김성진
    • 한국표면공학회지
    • /
    • 제54권5호
    • /
    • pp.248-259
    • /
    • 2021
  • This study examined the influence of post weld heat treatment (PWHT) conditions on corrosion behaviors of laser-welded super duplex stainless steel tube. Due to the high cooling rate of laser welding, the phase fraction of ferrite and austenite in the weld metal became unbalanced significantly. In addition, the Cr2N particles were precipitated adjacent to the fusion line, which can be susceptible to the localized corrosion. On the other hand, the phase fraction in the weld metal was restored at a ratio of 5:5 when exposed to temperatures above 1060 ℃ during the post weld heat treatment. Nevertheless, the high beltline speed during the PWHT, leading to the insufficient cooling rate, caused a precipitation of σ phase at the interface between ferrite/austenite in both weld metal and base metal. This resulted in the severe corrosion damages and significant decrease in critical pitting temperature (CPT), which was even lower than that measured in as-welded condition. Moreover, the fraction of σ phase in the center region of post weld heat treated steel tube was obtained to be higher than in the surface region. These results suggest that the PWHT conditions for the steel tube should be optimized to ensure the high corrosion resistance by excluding the precipitation of σ phase even in center region.

슈퍼 듀플렉스 스테인리스강(UNS S32506) 레이저 조관용접 튜브의 용접 후 열처리에 따른 부식거동 (Corrosion Behaviors of Laser-welded Super Duplex Stainless Steel(UNS S32506) Tube with Post-Weld Heat Treatment Conditions)

  • 조동민;박진성;홍승갑;황중기;김성진
    • 한국표면공학회지
    • /
    • 제54권3호
    • /
    • pp.102-111
    • /
    • 2021
  • The corrosion behaviors of laser-welded super duplex stainless steel tubes with post-weld heat treatment(PWHT) conditions(950, 1000, 1050, 1100 ℃ for 5 and 30 min) were evaluated by electrochemical potentiodynamic polarization and critical pitting temperature measurements. This study showed that the critical metallurgical factors affecting the degradation of corrosion resistance of a steel tube in as-welded condition were the unbalanced phase fraction(ferrite:austenite = 94:4), Cr2N precipitation, and phase transformation from the austenite phase to ɛ-martensite(via stress-induced phase transformation). The improvement in the corrosion resistance of the welded specimen depends greatly on the PWHT conditions. The specimens after PWHT conducted below 1000 ℃ showed inferior corrosion resistance, caused by precipitation of the sigma phase enriched with Cr and Mo. At 1100 ℃ for a longer duration in PWHT, the ferrite phase grows, and its fraction increases, leading to an unbalanced phase fraction in the microstructure. As a result, pitting can be initiated primarily at the interface between the ferrite/austenite phase, particularly in base metal.