• 제목/요약/키워드: PWE

검색결과 41건 처리시간 0.029초

알루미늄 나노 분말의 수화반응에 의한 수산화알루미늄 형성 (Formation of an Aluminum Hydroxide Fiber by a Hydrolysis of Aluminum Nano Powder)

  • 이근희;오영화;이창규;김흥회
    • 한국재료학회지
    • /
    • 제15권3호
    • /
    • pp.172-176
    • /
    • 2005
  • Formation of aluminum hydroxide by a hydrolytic reaction of nano aluminum powder synthesized by a pulsed wire evaporation (PWE) method has been studied. The type and morphology of the hydroxides were investigated with various initial temperatures and pHs. The nano fibrous boehmite (AlOOH) was formed predominantly over $40^{\circ}C$ of the hydrolytic temperature in acid solution, while the bayerite $(Al(OH)_3)$ was formed predominantly below $30^{\circ}C$ in alkali solution with a faceted crystalline structure. As a result the boehmite showed a much larger specific surface area (SSA) than that of bayerite. The highest SSA of the boehmite was about $409\;m^2/g$.

Thermally Stabilized Porous Nickel Support of Palladium Based Alloy Membrane for High Temperature Hydrogen Separation

  • Ryi, Shin-Kun;Park, Jong-Soo;Cho, Sung-Ho;Hwang, Kyong-Ran;Kim, Sung-Hyun
    • Corrosion Science and Technology
    • /
    • 제6권3호
    • /
    • pp.133-139
    • /
    • 2007
  • Nickel powder was coated with aluminum nitrate solution to increase the thermal stability of a porous nickel support and control the nickel content in the Pd-Cu-Ni ternary alloyed membrane. Raw nickel powder and alumina coated nickel powder were uniaxialy pressed by home made press with metal cylindrical mold. Though the used nickel powder prepared by pulsed wire evaporation (PWE) method has a good thermal stability, the porous nickel support was too much sintered and the pores of porous nickel support was plugged at high temperature (over $800^{\circ}C$) making it not suitable for the porous support of a palladium based composite membrane. In order to overcome this problem, the nickel powder was coated by alumina and alumina modified porous nickel support resists up to $1000^{\circ}C$ without pore destruction. Furthermore, the compositions of Pd-Cu-Ni ternary alloy membrane prepared by magnetron sputtering and Cu-reflow could be controlled by not only Cu-reflow temperature but also alumina coating amount. SEM analysis and mercury porosimeter analysis evidenced that the alumina coated on the surface of nickel powder interrupted nickel sintering.

이동 백홀 망에서 Radio Access Network의 성능 (Performance for Radio Access Network in mobile backhaul network)

  • 박천관
    • 한국인터넷방송통신학회논문지
    • /
    • 제12권6호
    • /
    • pp.297-302
    • /
    • 2012
  • 이동 백홀 망에서 RAN은 이동통신 기지국을 이동 백홀망에 연결시켜 준다. 이 시스템은 여러 세대의 이동 통신 기술에 따른 인터페이스, 즉 셀 사이트 영역에서는 TDM, ATM, 그리고 이더넷, 이동 백홀 영역에서는 이더넷 인터페이스로 구성된다. 조만간에 TDM 기반의 이동통신 네트워크는 모두 IP/Ethernet으로 전환될 것이고, 궁극적으로 이더넷 및 TDM 트래픽이 IP 네트워크를 통하여 전달될 것 이다. 따라서 이들 기술들을 이동 백홀 망으로 전송되기 위하여 각각은 캡슐화가 되어야 한다. 본 논문에서는 각각의 캡슐화, 즉, ATM, MPLS, IP/UDP, 그리고 MEF8에 따른 성능이 측정되었다.

전기선폭발법을 이용한 core/shell 구조 Ag/C 나노 입자의 제조 및 열처리조건에 따른 특성 (Synthesis of Core/shell Structured Ag/C Nano Particles and Properties on Annealing Conditions)

  • 전수형;엄영랑;이창규
    • 한국분말재료학회지
    • /
    • 제17권4호
    • /
    • pp.295-301
    • /
    • 2010
  • Multi shell graphite coated Ag nano particles with core/shell structure were successfully synthesized by pulsed wire evaporation (PWE) method. Ar and $CH_4$ (10 vol.%) gases were mixed in chamber, which played a role of carrier gas and reaction gas, respectively. Graphite layers on the surface of silver nano particles were coated indiscretely. However, the graphite layers are detached, when the particles are heated up to $250^{\circ}C$ in the air atmosphere. In contrast, the graphite coated layer was stable under Ar and $N_2$ atmosphere, though the core/shell structured particles were heated up to $800^{\circ}C$. The presence of graphite coated layer prevent agglomeration of nanoparticles during heat treatment. The dispersion stability of the carbon coated Ag nanoparticles was higher than those of pure Ag nanoparticles.

전기폭발법에 의해 제조된 Ni 나노분말의 분급 특성 (Characterization of Classification of Synthesized Ni Nanopowders by Pulsed Wire Evaporation Method)

  • 박중학;김건홍;이동진;홍순직
    • 한국분말재료학회지
    • /
    • 제24권5호
    • /
    • pp.389-394
    • /
    • 2017
  • Ni wires with a diameter and length of 0.4 and 100 mm, respectively, and a purity of 99.9% are electrically exploded at 25 cycles per minute. The Ni nanopowders are successfully synthesized by a pulsed wire evaporation (PWE) method, in which Ar gas is used as the ambient gas. The characterization of the nanopowders is carried out using X-ray diffraction (XRD) and a high-resolution transmission electronmicroscope (HRTEM). The Ni nanopowders are classified for a multilayer ceramic condenser (MLCC) application using a type two Air-Centrifugal classifier (model: CNI, MP-250). The characterization of the classified Ni nanopowders are carried out using a scanning electron microscope (SEM) and particle size analysis (PSA) to observe the distribution and minimum classification point (minimum cutting point) of the nanopowders.

알루미늄의 수화 반응시 pH와 온도에 따른 형상 변화 (The Effect of pH and temperature on the Morphology of Aluminum Hydroxides formed by Hydrolysis Reaction)

  • 오영화;이근회;박중학;이창규;김흥회;김도향
    • 한국분말재료학회지
    • /
    • 제11권2호
    • /
    • pp.118-123
    • /
    • 2004
  • A formation of aluminum hydroxide by hydrolysis reaction in the water has been studied by using nano aluminum powder fabricated by pulsed wire evaporation(PWE) method. The hydroxide type and morphology depending on temperature and pH were examined by structural analysis. The Boehmite($Al_2O_3$.$H_2O$ or AIO(OH)) was predominantly formed in high temperature region over 4$0^{\circ}C$, while the Bayerite($Al_2O_3$.$H_2O$ or $Al(OH)_3$) below $30^{\circ}C$ of hydrolysis temperature. The Boehmite formation was preferred to the Bayerite in acidic solution in the same hydrolysis temperature. The slowly formed Bayerite phase showed facet crystalline structure, while the fast formed Boehmite was fine fiber with a large aspect ratio of several nm in diameter and several hundred nm in length, and with much larger specific surface area(SSA) than that of Bayerite. The highest SSA was about $420m^2$/g.

전기 폭발법에 의해 제조된 Cu-Ni 나노 분말의 윤활성 향상 (Tribological Properties of Cu-Ni Alloy Nanopowders Synthesized by Pulsed Wire Evaporation (PWE) Method)

  • 오정석;박중학;김흥회;이창규
    • 한국분말재료학회지
    • /
    • 제11권5호
    • /
    • pp.376-382
    • /
    • 2004
  • Nanoscale Cu-Ni alloy nanopowders have been produced by a pulsed wire evaporation method in an inert gas. The effect of Cu-Ni alloy nanopowders as additives to motor oil on the tribological properties was studied at room temperature. The worn surfaces were characterized by Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray Spectroscopy (EDS). Cu-Ni alloy nanopowders as additives lowered coefficient of friction and wear rate. It was found that a copper containing layer on the worn surface was formed, and deposited layers of the metal cladding acted as lubricant on the worn surface, reducing the friction coefficient. It was clearly demonstrated that Cu-Ni alloy nanopowders as additives are able to restore the worn surface and to preserve the friction surfaces from wear.

Al 분말의 수화 반응과 스파크 플라즈마 열처리법으로 제조된 알루미나 성형체 연구 (Study of Hydrolysis of Al Powder and Compaction of Nano Alumina by Spark Plasma Sintering(SPS))

  • 엄영랑;이민구;이창규
    • 한국분말재료학회지
    • /
    • 제12권6호
    • /
    • pp.422-427
    • /
    • 2005
  • The $Al_2O_3$ with various phases were prepared by simple ex-situ hydrolysis and spark plasma sintering (SPS) process of Al powder. The nano bayerite $(\beta-Al(OH)_3)$ phase was derived by hydrolysis of commercial powder of Al with micrometer size, whereas the bohemite (AlO(OH)) phase was obtained by hydrolysis of nano Al powder synthesized by pulsed wire evaporation (PWE) method. Compaction as well as dehydration of both nano bayerite and bohemite was carried out simultaneously by SPS method, which is used to fabricate dense powder compacts with a rapid heating rate of $100^{\circ}C$ per min. under the pressure of 50MPa. After compaction treatment in the temperature ranges from $100^{\circ}C\;to\; 1100^{\circ}C$, the bayerite and bohemite phases change into various alumina phases depending on the compaction temperatures. The bayerite shows phase transition of $Al(OH)_3{\to}{\eta}-Al_2O_3{\to}{\theta}-Al_2O_3{\to}\alpha-Al_2O_3$ sequences. On the other hand, the bohemite experiences the phase transition from AlO(OH) to ${\gamma}-Al_2O_3\;at\;350^{\circ}C.$ It shows AlO(OH) ${\gamma}-Al_2O_3{\to}{\delta}-Al_2O_3{\to}{\alpha}-Al_2O_3$ sequences. The ${\gamma}-Al_2O_3$ compacted at $550^{\circ}C$ shows a high surface area $(138m^2/g)$.

나노 및 마이크로 알루미늄의 가수분해에 의한 알루미늄 수산화물의 형성 (Formation of Aluminum Hydroxides by Hydrolysis of Nano and Micro Al Powders)

  • 오영화;이근희;박중학;이창규;김흥회;김도향
    • 한국분말재료학회지
    • /
    • 제12권3호
    • /
    • pp.186-191
    • /
    • 2005
  • A formation of aluminum hydroxide by hydrolysis of nano and micro aluminum powder has been studied. The nano aluminum powder of 80 to 100 nm in diameter was fabricated by a pulsed wire evaporation (PWE) method. The micro powder was commercial product with more than $10\;{\mu}m$ in diameter. The hydroxide type and morphology depending on size of the aluminum powder were examined by several analyses such as XRD, TEM, and BET. The hydrolysis procedure of micro aluminum powder was different from that of nano aluminum powder. The nano aluminum powder after immersing in the water was transformed rapidly to a nano fibrous boehmite, accompanying with a remarkable temperature increase, and then further transformed slowly to a stable bayerite. However, the micro powder was changed to the stable bayerite slowly and directly. The formation of fibrous aluminum hydroxide from nano aluminum powder might be due to the fine cracks which were formed by hydrogen gas pressure on the surface hydroxide layer during hydrolysis. The nano powder with large specific surface area and small size reacted more actively and faster than the micro powder, and transformed to meta-stable hydroxide in relatively short reaction time. Therefore, the formation of fibrous boehmite is special characteristic of hydrolysis of nano aluminum powder.

한국전통차가 납투여된 흰쥐의 혈장과 간조직 중 지질농도에 미치는 영향 (Effect of Korean Traditional Teas on Plasma and Hepatic Lipid Levels in Lead-Administered Rats)

  • 김덕진;조수열;김명주
    • 한국식품영양과학회지
    • /
    • 제32권2호
    • /
    • pp.263-268
    • /
    • 2003
  • 한국전통차가 납투여된 흰쥐의 지질농도 변화에 미치는 영향을 구명하기 위하여 납(25mg/kg BW/week)과 녹차, 감잎 홍화 및 둥글레의 열수추출물을 체중 kg당 1.26 g이 되도록 매일 경구투여하여 4주간 사육하였다. 한국전통차의 열수추출물은 납 투여로 인해 억 제된 식이섭취량과 체중감소 뿐만 아니라 납 투여로 증가된 간, 심장 및 비장 중량 역시 녹차, 감잎, 홍화 및 둥글레 열수추출물 급여시 현저하게 회복되었다. 혈장 중의 중성 지질 함량은 납 단독투여군이 정상군에 비하여 유의적인 증가를 나타내었으나 녹차, 감잎, 홍화 및 둥글레 열수추출물 급여시 각각 30.5%, 32%, 40%, 33%의 감소 효과를 나타내었다. 총 콜레스테롤, 유리콜레스테롤 및 콜레스테릴 에스테르의 농도는 실험식이 급여시 납 단독투여군에 비하여 각각 유의적인 감소 현상을 관찰할 수 있었다. 또한 실험식이 급여시혈장 중의 YLDL과 LDL-콜레스테롤 농도 저하 및 HDL-콜레스테롤 농도가 증가되는 것으로 보아 한국전통차가 혈장 중의 지질대사 개선에 효과적임을 확인할 수 있었다. 간조직의 중성지질, 총콜레스테롤, 유리콜레스테롤과 콜레스테롤 에스테르농도는 납 투여시 유의적으로 증가된 반면, 녹차, 감잎, 홍화 및 둥글레 열수추출물 급여시 유의적으로 감소되었다.