• 제목/요약/키워드: PVPCS(Photovoltaic Power Conditioning System)

검색결과 9건 처리시간 0.024초

태양광 인버터의 노치 필터 최적 설계 (Optimal Design of Notch Filter in Photovoltaic Inverter)

  • 김용래;허철영;이영권;최익;최주엽
    • 한국태양에너지학회 논문집
    • /
    • 제39권2호
    • /
    • pp.81-92
    • /
    • 2019
  • When Photovoltaic inverter is connected to grid and used as PVPCS (Photovoltaic Power Conditioning System), 120 Hz AC ripple occurs at the dc-link capacitor voltage. This AC ripple reduces the efficiency of PVPCS and shortens the lifetime of the capacitor. In this paper, we design a notch filter to remove AC ripple. As a result, the AC voltage ripple was removed from the dc link and the THD of the PVPCS output current with the notch filter was lowered. This notch filter is determined by the damping coefficient, the bandwidth coefficient, and the switching frequency. Among these, the switching frequency determines the switching loss and the size of the LC filter, and the PVPCS with the high switching frequency has a greater efficiency loss due to the switching loss than the efficiency improvement by the notch filter. Therefore, it is important to set the optimum switching frequency in the PVPCS with the notch filter applied. In this paper, THD and switching loss of PVPCS output current with notch filter are calculated through simulation, and cost function to calculate optimum switching frequency through data is proposed.

PVPCS DC/DC 컨버터 모델링 및 2중 루프 제어와 단일 루프 제어의 특성 비교 (Comparative Study between Two-loop and Single-loop Control of DC/DC Converter for PVPCS)

  • 김동환;정승환;송승호;최주엽;최익;안진웅;이상철;이동하
    • 한국태양에너지학회 논문집
    • /
    • 제32권spc3호
    • /
    • pp.245-254
    • /
    • 2012
  • In photovoltaic system, the characteristics of photovoltaic module such as open circuit voltage and short circuit current will be changed because of cell temperature and solar radiation. Therefore, the boost converter of a PV system connects between the output of photovoltaic system and DC link capacitor of grid connected inverter as controlling duty ratio for maximum power point tracking(MPPT). This paper shows the dynamic characteristics of the boost converter by comparing single-loop and two-loop control algorithm using both analog and digital control. Both proposed compensation methods have been verified with computer simulation to demonstrate the validity of the proposed control schemes.

3상 계통연계형 태양광 PCS의 단독운전검출을 위한 개선된 무효전력변동기법 (Improved RPV(reactive-power-variation) anti-islanding method for grid-connected three-phase PVPCS)

  • 이기옥;정영석;소정훈;유병규;유권종;최주엽;최익
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.1159-1160
    • /
    • 2006
  • As the grid-connected photovoltaic power conditioning systems (PVPCS) are installed in many residential areas, this has raised potential problems of network protection on electrical power system. One of the numerous problems is an Island phenomenon. There has been an argument that because the probability of islanding is extremely low it may be a non-issue in practice. However, there are three counter-arguments: First, the low probability of islanding is based on the assumption of 100% power matching between the PVPCS and the islanded local loads. In fact, an island can be easily formed even without 100% power matching (the power mismatch could be up to 30% if only traditional protections are used, e.g. under/over voltage/frequency). The 30% power-mismatch condition will drastically increase the islanding probability. Second, even with a larger power mismatch, the time for voltage or frequency to deviate sufficient to cause a trip, plus the time required to execute the trip (particularly if conventional switchgear is required to operate), can easily be greater than the typical re-close time on the distribution circuit. And, third, the low-probability argument is based on the study of PVPCS. Especially, if the output power of PVPCS equals to power consumption of local loads, it is very difficult for the PVPCS to sustain the voltage and frequency in an island. Unintentional islanding of PVPCS may result in power-quality issues, interference to grid-protection devices, equipment damage, and even personnel safety hazards. So the verification of anti-islanding performance is strongly needed. In this paper, the authors propose the improved RPV method through considering power quality and anti-islanding capacity of grid-connected three-phase PVPCS in IEEE Std 1547 ("Standard for Interconnecting Distributed Resources to Electric Power Systems"). And the simulation and experimental results are verified.

  • PDF

단상 PVPCS 출력 전류의 리플 개선을 위한 노치 필터 및 피드 포워드 제어기 설계 (The Feed-forward Controller and Notch Filter Design of Single-Phase Photovoltaic Power Conditioning System for Current Ripple Mitigation)

  • 김승민;양승대;최주엽;최익;이영권
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.325-330
    • /
    • 2012
  • A single-phase PVPCS(photovoltaic power conditioning system) that contains a single phase dc-ac inverter tends to draw an ac ripple current at twice the out frequency. Such a ripple current may shorten passive elements life span and worsen output current THD. As a result, it may reduce the efficiency of the whole PVPCS system. In this paper, the ripple current propagation is analyzed, and two methods to reduce the ripple current are proposed. Firslyt, this paper presents notch filter with IP voltage controller to reject specific current ripple in single-phase PVPCS. The notch filter can be designed that suppress just only specific frequency component and no phase delay. The proposed notch filter can suppress output command signal in the ripple bandwidth for reducing output current THD. Secondly, for reducing specific current ripple, the other method is feed-forward compensation to incorporate a current control loop in the dc-dc converter. The proposed notch filter and feed-forward compensation method have been verified with computer simulation and simulation results obtained demonstrate the validity of the proposed control scheme.

  • PDF

태양광 발전용 전력변환장치 개발 (Development of Power Conditioning System for Photovoltaic Power Generation System)

  • 송두영;김태훈;김진욱;이태원;김돈식;원충연;김재형;김준구
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2010년도 하계학술대회 논문집
    • /
    • pp.275-276
    • /
    • 2010
  • 최근 신재생 에너지 발전에 대한 관심이 증가하고 있는 가운데 태양광 발전시스템은 그중에서도 가장 친환경적인 시스템으로 인정받고 있다. 소음 및 안전성 측면에서 볼 때 가정에서 이용하기 좋은 발전시스템이기 때문에 많은 기업들이 가정용 발전시스템의 관련 제품들을 개발하고 있다. 그중에서도 핵심적으로 이용되는 PVPCS (Photovoltaic Power Conditioning System)는 다른 전력변환 장치들과 마찬가지로 고 효율화 하는 것이 최대 목표라 할 수 있다.

  • PDF

단독운전방지를 위한 능동적 주파수 변환기법의 출력전력 분석 (Output Power Analysis of Active Frequency Drift Method for Anti-Islanding)

  • 이기옥;최주엽;최익;유권종;안진웅
    • 한국태양에너지학회 논문집
    • /
    • 제29권6호
    • /
    • pp.75-80
    • /
    • 2009
  • Recently, as the grid-connected photovoltaic power conditioning systems (PVPCS) are installed in many residential areas, these have raised potential problems of network protection on electrical power system. One of the numerous problems is an Islanding phenomenon. In this paper, active frequency drift (AFD) method, one of the anti-islanding methods which is analyzed by current magnitude compensation and calculation of RMS value of the output power is proposed and verified by simulation.

능동적 주파수 변환기법의 출력전류 고조파 왜형율 분석 (THD Analysis of Output Current for Active Frequency Drift Method in Anti-islanding)

  • 이기옥;최주엽;최익;유권종;안진웅
    • 한국태양에너지학회 논문집
    • /
    • 제30권1호
    • /
    • pp.7-12
    • /
    • 2010
  • As many grid-connected photovoltaic power conditioning systems (PVPCS)are installed in many residential areas simultaneously, these have raised potential problems of network protection on electrical power system. One of the numerous problems is an Islanding phenomenon. In this paper, active frequency drift (AFD) method, one of the anti-islanding methods which is analyzed by current magnitude compensation and calculation of the fundamental component. Both harmonic component and RMS value of the output current for THD analysis are provided and verified by simulation.

DPLL을 이용한 능동적 단독운전방지를 위한 무효전력변동법 (Reactive Power Variation Method for Anti-islanding Using Digital Phase-Locked-Loop)

  • 이기옥;유병규;유권종;최주엽;최익
    • 한국태양에너지학회 논문집
    • /
    • 제28권2호
    • /
    • pp.64-69
    • /
    • 2008
  • As the grid-connected photovoltaic power conditioning systems (PVPCS) are installed in many residential areas, these have raised potential problems of network protection on electrical power system. One of the numerous problems is an Islanding phenomenon. There has been an argument that it may be a non-issue in practice because the probability of islanding is extremely low. However, there are three counter-arguments: First, the low probability of islanding is based on the assumption of 100% power matching between the PVPCS and the islanded local loads. In fact, an islanding can be easily formed even without 100% power matching (the power mismatch could be up to 30% if only traditional protections are used, e.g. under/over voltage/frequency). The 30% power-mismatch condition will drastically increase the islanding probability. Second, even with a larger power mismatch, the time for voltage or frequency to deviate sufficiently to cause a trip, plus the time required to execute a trip (particularly if conventional switchgear is required to operate), can easily be greater than the typical re-close time on the distribution circuit. Third, the low-probability argument is based on the study of PVPCS. Especially, if the output power of PVPCS equals to power consumption of local loads, it is very difficult for the PVPCS to sustain the voltage and frequency in an islanding. Unintentional islanding of PVPCS may result in power-quality issues, interference to grid-protection devices, equipment damage, and even personnel safety hazards. Therefore the verification of anti-islanding performance is strongly needed. In this paper, improved RPV method is proposed through considering power quality and anti-islanding capacity of grid-connected single-phase PVPCS in IEEE Std 1547 ("Standard for Interconnecting Distributed Resources to Electric Power Systems"). And the simulation results are verified.

AFD 기법의 출력전력 분석 (Output Power Analysis for Active Frequency Drift Method)

  • 이기옥;최주엽;최익;유권종
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 추계학술발표대회 논문집
    • /
    • pp.297-302
    • /
    • 2009
  • As the grid-connected photovoltaic power conditioning systems (PVPCS) are installed in many residential areas, these have raised potential problems of network protection on electrical power system. One of the numerous problems is an Islanding phenomenon. In this paper, active frequency drift (AFD) method, one of the anti-islanding analyzed by current magnitude compensation and calculation of RMS value of the output power.

  • PDF