• 제목/요약/키워드: PVDF-HFP

검색결과 23건 처리시간 0.017초

열 특성 및 전기화학 특성이 향상된 리튬이차전지용 ZrO2 코팅 PVA (Polyvinyl Alcohol) 복합 부직포 분리막 개발 (Development of Polyvinyl Alcohol (PVA) Non-woven Separator Coated with ZrO2 Ceramic Nanoparticles for Improving Electrochemical Performance and Thermal Property of Lithium Ion Batteries)

  • 김기재
    • 전기화학회지
    • /
    • 제20권3호
    • /
    • pp.49-54
    • /
    • 2017
  • 본 연구에서는 리튬이차전지용 분리막으로 사용되고 있는 폴리올레핀 계열 분리막의 취약한 열 안정성을 극복하기 위해 부직포 기반의 세라믹 코팅 복합 분리막을 개발하였다. 개발된 복합 분리막은 지르코늄 다이옥사이드 ($ZrO_2$) 나노 입자와 PVDF-HFP (Polyvinylidine fluoride-hexafluoropropylene) 바인더로 구성된 세라믹 코팅층을 전기 방사로 제조된 폴리비닐알코올 (PVA) 지지체 양면에 코팅하여 제조하였다. 개발 복합 부직포 분리막의 통기도 및 전해액 함침성을 측정한 결과 상용 PE 분리막 대비 매우 낮은 Gurley값과 우수한 전해액 함침 특성을 나타냈으며 이로 인해 이온 전도성이 상용 PE 분리막 대비 크게 향상됨을 확인하였다. 또한 개발 복합 부직포 분리막의 전기화학적 특성 평가를 위해 코인셀을 제조하였고 고율 방전 실험을 수행한 결과 상용 PE 분리막 대비 고율방전 특성이 크게 향상됨이 관찰되었다. 마지막으로 개발 복합 부직포 분리막의 열적 안정성을 평가하기 위해 열 수축율 실험을 수행하였으며 그 결과 개발 복합 부직포 분리막의 열수축율이 상용 PE 분리막 대비 크게 개선되는 것을 관찰하였다.

새로운 막 제조 방법에 의한 고분자 전해질막의 특성 향상 (Improvement of Properties in Solid Polymer Electrolyte Using New Preparation Method)

  • 김태희;이정훈;박권필
    • 한국수소및신에너지학회논문집
    • /
    • 제17권3호
    • /
    • pp.331-337
    • /
    • 2006
  • 높은 이온전도도와 충분한 기계적 강도, 전해질 누수가 적은 새로운 형태의 고분자 전해질막(pore-gel SPE)을 연구 개발하였다. 다공성 PVDF-HFP 고분자막의 기공 내에 전해질 용액을 흡수시킨 후 막 내에서 젤화를 진행시켰다. 전해질 용액은 2:2:1의 비를 갖는 PC/EC/DMA에 1M SA(Salicylic acid)를 용해하고 여기에 고분자막을 용해시킬 수 있는 아세톤을 첨가하였다. 초음파를 이용함으로써 고분자막의 용액 흡수율을 증가시키고 또 고분자막에서 젤화를 촉진 시킬 수 있었다. 이렇게 젤화한 막의 이온전도도는 젤화 전 막보다 $1{\sim}2.2$ 배 향상되었고, 인장강도는 gel-type SPE 보다 40 배 증가하였으며, 전해질 누수실험결과 hybrid-type SPE는 13%의 누수를 보였으나 본 연구의 막(pore-gel SPE)은 6%로 감소함을 보였다.

탄소나노섬유복합체를 이용한 의류용 직물발열체의 제조 및 특성 (Preparation and Characterization of Carbon Nanofiber Composite Coated Fabric-Heating Elements)

  • 강현숙;이선희
    • 한국의류학회지
    • /
    • 제39권2호
    • /
    • pp.247-256
    • /
    • 2015
  • This study prepared fabric-heating elements of carbon nanofiber composite to characterize morphologies and electrical properties. Carbon nanofiber composite was prepared with 15wt% PVDF-HFP/acetone solution, and 0, 1, 2, 4, 8, and 16wt% carbon nanofiber. Dispersion of solution was conducted with stirring for a week, sonification for 24 hours, and storage for a month, until coating. Carbon nanofiber composite coated fabrics were prepared by knife-edge coating on nylon fabrics with a thickness of 0.1mm. The morphologies of carbon nanofiber composite coated fabrics were measured by FE-SEM. Surface resistance was determined by KS K0555 and worksurface tester. A heating-pad clamping device connected to a variable AC/DC power supply was used for the electric heating characteristics of the samples and multi-layer fabrics. An infrared camera applied voltages to samples while maintaining a certain distance from fabric surfaces. The results of morphologies indicated that the CNF content increased specifically to the visibility and presence of carbon nanofiber. The surface resistance test results revealed that an increased CNF content improved the performance of coated fabrics. The results of electric heating properties, surface temperatures and current of 16wt% carbon nanofiber composite coated fabrics were $80^{\circ}C$ and 0.35A in the application of a 20V current. Carbon nanofiber composite coated fabrics have excellent electrical characteristics as fabric-heating elements.