• 제목/요약/키워드: PVC-membrane

검색결과 169건 처리시간 0.021초

A Novel Polymer Membrane for Extraction Applications

  • Wang, Xungai;Xu, Jianying;Paimin, Rohani;Shen, Wei
    • Fibers and Polymers
    • /
    • 제3권2호
    • /
    • pp.68-73
    • /
    • 2002
  • In this study, a new type of Aliquat 336/PVC membrane has been made for extraction experiments. This new membrane is capable of holding more Aliquat 336 than previously developed extraction membranes, hence overcoming a major problem that has confronted many researchers for a long time. The new membrane has been used try investigate the rate of extraction fur the Cd(II) ion in 2.0 M HCI solution and the effect of membrane thickness on the rate of extraction. The experimental results have shown this new membrane has a promising future in relevant industrial applications. A new method is also used in this study to qualitatively identify the oily substance on the surface of membrane after the extraction experiment was completed. This oily substance has been found to be Aliquat 336.

고 선택성 수은(II) 이온 막 센서 (A Highly Selective Mercury(II) Ion-Selective Membrane Sensor)

  • Ensafi, Ali A.;Meghdadi, S.;Allafchian, Ali R.
    • 대한화학회지
    • /
    • 제51권4호
    • /
    • pp.324-330
    • /
    • 2007
  • 수은(II) 이온 센서로 이온투과 담체로서 bis(benzoylacetone) propylenediimine (H2(BA)2PD)을 근간으로 하는 새로운 이온 선택 PVC 막 전극이 개발하였다. 이 전극은 좋은 감응 특성을 보였고, 29.8±0.75 mV/10의 Nernstian 기울기로 부터 1.0×10-6-1.0×10-1 M 수은(II) 이온 농도 범위에서 선형 Emf vs. log[Hg2+]를 보였다. pH 2.5-11.5에서 검출한계는 2.2×10-7 M Hg(II)를 보였다. 다수의 전위 간섭이온에의 수은(II)이온 대한 선택 농도에 대해 역시 연구되었다. 이 센서는 다른 전하와 함께 많은 수의 양이온에 있어 수은(II)이온에 대해 고선택성을 보였다. 이 센 서는 60초 안에 빠는 감응을 보이며 화학적으로 불활성인 것을 알아 내었고 3개월 동안 좋은 재현성을 보였다(S = 0.27 mV). 이 전극은 실제 시료에서 수은(II)이온 의 분석에 대해 서도 만족할 만한 결과를 얻었다.

폴리우레탄을 메트릭스로한 액막형 칼륨이온 선택성 전극의 제조 및 특성 (Characteristics and Preparation of Potassium Ion Selective Liquid Membrane Electrode Based on Polyurethane Matrix)

  • 유광식;이용탁;강철용
    • 대한화학회지
    • /
    • 제35권2호
    • /
    • pp.128-134
    • /
    • 1991
  • 기존 칼륨이온 선택성 전극의 메트릭스로는 대체로 PVC가 사용되어졌으나, 본 연구에서는 폴리우레탄을 사용하였고, 용매 매개체로는 2-nitropheny-n-alkylate, 감응물질로는 potassium tetraphenyl borate 및 D-18-Crown-6 등을 써서 전극막을 제조하였다. 본 폴리우레탄 메트릭스의 칼륨이온 선택성전극의 수명은 75일로서 PVC 메트릭스의 칼륨이온 선택성 전극에 비하여 한층 더 길었다. 전극전위응답(slope factor)은 직선응답범위(K$^+$ 농도 : $1{\times}10^{-1}\;{\sim}\;1{\times}10^{-4}$ M)내에서 52 mV/decade이었고, 본 전극은 방해이온들 $(NH^{4+},\;Na^{+},\;Li^{+},\;Ca^{2+},\;Mg^{2+},\;Cu^{2+}$)이 존재하는 해수 중의 칼륨이온을 B(Ph)$_4^-$ 표준용액으로 전위차 적정시 종말점을 검출하는데 성공적으로 적용되었다.

  • PDF

Novel Triiodide PVC-Based Membrane Sensor Based on a Charge Transfer Complex of Iodine and Bis(2-hydroxyacetophenone)butane-2,3-dihydrazone

  • Ganjali, Mohammad Reza;Norouzi, Parviz;Shirvani Arani, Simindokht;Salavati Niasari, Masoud
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권11호
    • /
    • pp.1738-1742
    • /
    • 2005
  • In this study a novel triiodide ion-selective electrode based on a charge transfer complex of iodine and Bis(2-hydroxyacetophenone)butane-2,3-dihydrazone (ICT), as a membrane carrier was prepared. The electrode has a linear dynamic range between 1.0 ${\times}$ $10^{-2}$ and 5.0 ${\times}$ $10^{-7}$ M, with a Nernstian slope of 58. 99 ${\pm}$ 0.3 mV $decade^{-1}$ and detection limit of 3.0 ${\times}$ $10 ^{-7}$ M. The potentiometric response of the proposed sensor is independent of the pH of the solution in the pH range of 3.0-10.0. The electrode possesses the advantages of short conditioning time, fast response time, and especially, very good selectivity over a large number of common organic and inorganic anions. The electrode can be used for at least 6 months without any considerable divergences in the potentials. It was used as an indicator electrode in potentiometric titration of triiodide ion with thiosulfate.

Highly Selective Liquid Membrane Sensor Based on 1,3,5-Triphenylpyrylium Perchlorate for Quick Monitoring of Sulfate Ions

  • Ganjali, Mohammad Reza;Ghorbani, Maryam;Daftari, Azadeh;Norouzi, Parviz;Pirelahi, Hooshang;Dargahani, Hossein Daryanavard
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권2호
    • /
    • pp.172-176
    • /
    • 2004
  • A highly selective membrane electrode based on1,3,5-triphenylpyrylium perchlorate (TPPP) is presented. The proposed electrode shows very good selectivity for sulfate ions over a wide variety of common inorganic and organic anions. The sensor displays a nice Nernstian slope of -29.7 mV per decade. The working concentration ranges of the electrode is 1.0{\times}10^{-1}-6.3{\times}10^{-6} $M with a detection limit of $4.0{\times}10^{-6}$ M (480 ng per mL). The response time of the sensor in whole concentration ranges is very short (< 6 s). The response of the sensor is independent on the pH range of 2.5-9.5. The best performance was obtained with a membrane composition of 32% PVC, 59% benzyl acetate, 5% TPPP and 4% hexadecyltrimethylammonium bromide. It was successfully used as an indicator electrode for titration of sulfate ions with barium ions. The electrode was also applied for determination of salbutamol sulfate and paramomycine sulfate.

Polymeric Membrane Silver-ion Selective Electrodes Based on Schiff Base N,N'-Bis(pyridin-2-ylmethylene)benzene-1,2-diamine

  • Seo, Hyung-Ran;Jeong, Eun-Seon;Ahmed, Mohammad Shamsuddin;Lee, Hyo-Kyoung;Jeon, Seung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권6호
    • /
    • pp.1699-1703
    • /
    • 2010
  • The Schiff base N,N'-bis(pyridin-2-ylmethylene)benzene-1,2-diamine [BPBD] has been synthesized and explored as ionophore for preparing PVC-based membrane sensors selective to the silver ($Ag^+$) ion. Potentiometric investigations indicate high affinity of this receptor for silver ion. The best performance was shown by the membrane of composition (w/w) of ionophore: 1 mg, PVC: 33 mg, o-NPOE: 66 mg and additive were added 50 mol % relative to the ionophore in 1 mL THF. The sensor works well over a wide concentration range $1{\times}10^{-3}$ to $1.0{\times}10^{-7}$ M by pH 6 at room temperature (slope 58.6 mV/dec.) with a response time of 10 seconds and showed good selectivity to silver ion over a number of cations. It could be used successfully for the determination of silver ion content in environmental and waste water samples.

Polymeric Membrane and Solid Contact Electrodes Based on Schiff Base Complexes of Co(III) for Potentiometric Determination of Perchlorate Ions

  • Soleymanpour, Ahmad;Hanifi, Abdolghafoor;Kyanfar, Ali Hossein
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권9호
    • /
    • pp.1774-1780
    • /
    • 2008
  • New PVC based polymeric membrane electrodes (PME) and coated glassy carbon electrodes (CGCE) based on synthesized Schiff base complexes of Co(III); [Co(Salen)$(PBu_3)_2$]$ClO_4$, [Co($Me_2$Salen)$(PBu_3)_2$]$ClO_4$, [Co(Salen)$(PBu_3)H_2O$]$ClO_4$; as anion carriers for potentiometric determination of $ClO_4\;^-$were studied. The PME and also CGCE electrodes prepared with [Co(Me2Salen)$(PBu_3)_2$]$ClO_4$ showed excellent response characteristics to perchlorate ions. The electrodes exhibited Nernstian responses to $ClO_4\;^-$ ions over a wide concentration range with low detection limits ($1.0 {\times} 10^{-6}\;mol\;L^{-1}$ for PME and $9.0 {\times} 10^{-7}\;mol\;L^{-1}$ for CGCE). The electrodes possess fast response time, satisfactory reproducibility, appropriate lifetime and, most importantly, good selectivity toward $ClO_4\;^-$ relative to a variety of other common inorganic anions. The potentiometric response of the electrodes is independent of the pH in the pH range 2.5-8.5. The proposed sensors were used in potentiometric determination of perchlorate ions in mineral water and urine samples. The interaction of the ionophore with perchlorate ions was shown by UV/Vis spectroscopy.

Novel Thallium(I)-Selective Membrane Electrode Based on a Podal Ligand

  • Ganjali, Mohammad Reza;Pourjavid, Mohammad Reza;Mouradzadegun, Arash;Hosseini, Morteza;Mizani, Farhang
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권11호
    • /
    • pp.1585-1589
    • /
    • 2003
  • A PVC-based membrane electrode for thallium(I) ions based on 1,21,23,25-tetramethyl-2,20: 3,19-dimetheno-[H, 2] H, 23H, 25H-bis-[1,3] dioxocino[5,4-i:5',4'-i] benzo [1,2-d: 5.4-d'] bis [1,3] benzodioxocin(II) has been prepared. The electrode displays a linear dynamic range of $1.0{\times}10^{-1}-1.0{\times}10^{-5}$ M, with a Nernstian slope of $59.8{\pm}0.2\;mV\;{decad^-1}$, and a detection limit $5.0{\times}10^{-6}$ M. It has a very fast response time of<10 s and can be used for at least ten weeks without a considerable divergence in potentials. This electrode revealed comparatively good selectivity with respect to alkali, alkaline earth, and some transition and heavy metal ions and was effective in a pH range of 2.0-10.0. It was used as an indicator electrode in potentiometric titration of thallium ion with sulfide ion.

캘릭스 [4]크라운 유도체를 이온선택성 물질로 사용한 세슘이온 선택성 막전극 (Cesium Ion-Selective Electrode Based on Upper-rim Calix[4]crown Ionophore)

  • 남궁미옥;임혜재;백경수;윤영자
    • 분석과학
    • /
    • 제13권4호
    • /
    • pp.428-432
    • /
    • 2000
  • 새로운 캘릭스[4]크라운 화합물을 이온 선택성 물질로 사용하고 지지체로 PVC(polyvinyl chloride), 가소제로 DOS(dioctyl sebacate)를 사용하여 이온선택성 막전극을 제작 하였다. 제작한 막전극을 지시전극으로 사용하여 알칼리, 알칼리토금속 이온에 대하여 각각의 감응전위를 측정한 결과, pH7.20 Tris buffer에서 $10^{-5}-10^{-1}M$ 농도의 변화에 따른 $Cs^+$이온의 감응전위가 이론적인 Nernst식 기울기에 가까운 52.3 mV/decade로 직선성이 잘 성립하는 감응전위를 나타내었다. $Cs^+$이온 농도변화에 따른 막의 감응시간은 $t_{90%}$=10sec이었고, 막의 사용기간은 2개월 정도이다.

  • PDF

Electroanalytical Determination of Copper(II) Ions Using a Polymer Membrane Sensor

  • Oguz Ozbek;Meliha Burcu Gurdere;Caglar Berkel;Omer Isildak
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권1호
    • /
    • pp.66-74
    • /
    • 2023
  • In this study, a new potentiometric sensor selective to copper(II) ions was developed and characterized. The developed sensor has a polymeric membrane and contains 4.0% electroactive material (ionophore), 33.0% poly(vinyl chloride) (PVC), 63.0% bis(2-ethylhexyl)sebacate (BEHS) and 1.0% potassium tetrakis(p-chlorophenyl)borate (KTpClPB). This novel copper(II)-selective sensor exhibits a Nernstian response over a wide concentration range from 1.0×10-6 to 1.0×10-1 mol L-1 with a slope of 29.6 (±1.2) mV decade-1, and a lower detection limit of 8.75×10-7 mol L-1. The sensor, which was produced economically by synthesizing the ionophore in the laboratory, has a good selectivity and repeatability, fast response time and stable potentiometric behaviour. The potential response of the sensor remains unaffected of pH in the range of 5.0-10.0. Based on the analytical applications of the sensor, we showed that it can be used as an indicator electrode in the quantification of Cu2+ ions by potentiometric titration against EDTA, and can also be successfully utilized for the determination of copper(II) ions in different real samples.