• Title/Summary/Keyword: PVC-membrane

Search Result 169, Processing Time 0.021 seconds

A New Cone Shaped Asymmetrically Substituted Calix[4]arene as an ExcellentIonophore in Construction of Ag(I) ion-Selective Membrane Electrode

  • Ganjali, Mohammad Reza;Babaei, Leila Hajiagha;Taghvaei-Ganjali, Saeed;Modjallal, Atoosa;Sahmsipur, Mojtaba;Hosseini, Morteza;Javanbakht, Mehran
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.2
    • /
    • pp.177-181
    • /
    • 2004
  • A PVC membrane electrode for silver ion based on a new cone shaped calix[4]arene (CASCA) as membrane carrier was prepared. The electrode exhibits a Nernstian response for $Ag^+$ over a wide concentration range ($1.0{\times}10^{-1}-8.0{\times}10^{-6}$M) with a slope of 58.2 {\pm}$ 0.5 mV per decade. The limit of detection of the sensor is $5.0{\times}10^{-6}$M. The sensor has a very fast response time (~5 s) in the concentration range of ${\leq}=1.0{\times}10^{-3}$ M, and a useful working pH range of 4.0-9.5. The proposed sensor displays excellent discriminating ability toward $Ag^+$ ion with respect to common alkali, alkaline earth, transition and heavy metal ions. It was used as an indicator electrode in potentiometric titration of $Ag^+$ with EDTA and in direct determination of silver ion in wastewater of silver electroplating.

Characteristics of Spreading of Polymer Solution and Morphology of Ultrathin Membrane Prepared by Water-Casting Method (고분자용액의 수면전개 특성 및 박막구조)

  • 남석태;최성부;최호상;김병식
    • Membrane Journal
    • /
    • v.1 no.1
    • /
    • pp.55-64
    • /
    • 1991
  • The ultrathin membranes of cellulose acetate and polyvinyl chloride were prepared by the method of watercasting. The spreading ability of polymer solutions on water doereased with increasing the surface tention and the viscosity of polymer solutions, and the temperature of water surface, respectively. The aggregation states of water-casting membranes were dense and dense with increasing the concentration of polymer solutions and the temperature of water surface. The surface structure of the air sides showed more dense than that of the water sides. In the case of the 3 wt% cellulose acetate/acetone system, the thickness of the membrane was about $0.1{\mu}.$.

  • PDF

Lead(II)-selective Polymeric Electrode Using a Schiff Base Complex of N,N'-Bis-thiophene-2-ylmethylene-ethane-1,2-diamine as an Ion Carrier

  • Jeong, Tae-Jun;Jeong, Dae-Cheol;Lee, Hyo-Kyoung;Jeon, Seung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.8
    • /
    • pp.1219-1224
    • /
    • 2005
  • We prepared lead ion-selective PVC membranes that were based on N,N'-bis-thiophene-2-ylmethylene-ethane-1,2-diamine as a membrane carrier. The membrane electrode has a linear dynamic range between 1.0 ${\times}$ $10^{-5}$ and 1.0 ${\times}$ $10^{-1}$ M with a Nernstian slope of 29.79 mV per decade, and its detection limit was 2.04 ${\times}$ $10^{-6}$ M at room temperature. The potentiometric response is independent of the pH of the solution in the pH range of 5-7. The proposed electrode revealed good selectivity and response for $Pb^{2+}$ over a wide variety of other metal ions in pH 5.0 buffer solutions, and there was good reproducibility of the base line on the subsequent measurements. The membrane electrode has a relatively fast response time, satisfactory reproducibility and a relatively long life time.

A Novel Iron(III) Selective Membrane Electrode Containing a Tripodal Polycatacholamine as Sensor

  • Bera, Rati Kanta;Sahoo, Suban K;Baral, Minati;Kanungo, B.K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3592-3596
    • /
    • 2011
  • A novel poly(vinylchloride)-based membrane sensor using $N^1$,$N^3$,$N^5$-tris(2-(2,3-dihydroxybenzylamino)-ethyl)cyclohexane-1,3,5-tricarboxamide (CYCOENCAT, L) as ionophore has been prepared and explored as $Fe^{3+}$ selective electrode. The membrane electrode composed of ionophore, poly(vinylchloride) and o-nitropheyloctyl ether in the optimum ratio 4:33:63 gave excellent potentiometric response characteristics, and displayed a linear log[$Fe^{3+}$] versus EMF response over a wide concentration range of $1.0{\times}10^{-5}-1.0{\times}10^{-1}$ M with super nernstian slope of 28.0 mV/decade and the detection limit of $8.0{\times}10^{-6}$ M. The proposed ion selective electrode showed fast response time (< 15 s), wide pH range (3.0-7.0), high non-aqueous tolerance (up to 20%) and adequate long life time (120 days). It also exhibited very good selectivity for $Fe^{3+}$ relative to a wide variety of alkali, alkaline earth, transition and heavy metal ions. Further, the analytical applicability of the sensor was tested as an indicator electrode in the potentiometric titration of $Fe^{3+}$ with EDTA.

고분자/(18-Crown-6) 복합박막 제조 및 $k^+$ 이온의 전달 특성

  • 심재동;남석태;최성부;김병식
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1993.10a
    • /
    • pp.61-62
    • /
    • 1993
  • 고분자 분리막의 투과성과 선택성을 향상시키기 위하여 IPN막, 고분자/액정 복합막을 다양한 기능을 가진 재료가 개발되고 있다. 본 연구에서는 알칼리메탈이온을 분리하기 위하여 고분자 지지체에 운반체로써 crown ether(macro-cyclic polyether)류를 분산시킨 고분자/운반체 복합박막을 제조하였다. 고분자/운반체 복합박막은 고분자와 운반체의 혼합용액을 수면에 전개시켜 제조하였다. 고분자는 PVC(M.W 60000, Aldrich), PS(M.W 280000, Aldrich)와 CA(M.W 30000, Sigma)를 사용하였고, 운반체로는 crown ether 중 $K^+$이온과 선택성을 가지는 18-Crown-6(Sigma)를 사용, 고분자와 18-Crown-6의 증량분을 달리하는 혼합용액을 제조하였다. 이때 용매는 Tetrahydrofuran를 사용하였다. 수면에 생성된 박막을 다공성 지지막에 적층시킨 후 감압 건조시켜 복합막을 제조하였다. 고분자와 운반체가 혼합되어 있는 용액의 점도와 표면장력을 각각 fluid spectrometer와 tensionmeter를 사용, 용액이 수면위에서 완전한 막을 형성하면서 분산될 수 있는지 조사하였으며, 고분자 지지체에 분산 고정된 운반체의 분산형태와 표면농도를 조사하기 위하여 ESCA를 이용하였다.

  • PDF

Disposable Nitrate-Selective Optical Sensor Based on Fluorescent Dye

  • Kim, Gi-Young;Sudduth, Kenneth A.;Grant, Sheila A.;Kitchen, Newell R.
    • Journal of Biosystems Engineering
    • /
    • v.37 no.3
    • /
    • pp.209-213
    • /
    • 2012
  • Purpose: This study was performed to develop a simple, disposable thin-film optical nitrate sensor. Methods: The sensor was fabricated by applying a nitrate-selective polymer membrane on the surface of a thin polyester film. The membrane was composed of polyvinylchloride (PVC), plasticizer, fluorescent dye, and nitrate-selective ionophore. Fluorescence intensity of the sensor increased on contact with a nitrate solution. The fluorescence response of the optical nitrate sensor was measured with a commercial fluorospectrometer. Results: The optical sensor exhibited linear response over four concentration decades. Conclusions: Nitrate ion concentrations in plant nutrient solutions can be determined by direct optical measurements without any conditioning before measurements.

열유도 상분리 공정 및 연신 공정을 이용한 중공사막의 제조

  • 유종범;김진호;김성수
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.79-80
    • /
    • 1997
  • 1. 서론 : 열유도 상분리법(TIPS)은 일반적으로 상온에서 적정용매가 없는 고분자 소재를 아용하여 고분자-희석제 2성분계의 혼합물을 적절한 냉각 속도로 상분리 온도 이하로 급냉시켜 연속상과 분산상의 상분리를 일으킨 후 matrix전체에 다공성을 부여하여 분리막을 제조하는 공정이다. 폴리올레핀계 고분자를 중심으로 나일론11. 폴리카보네이트, PVC, ABS 수지 등을 소재로 plasmapheresis, 인공심폐기, breathing wear 등의 용도로 많이 응용되어 왔으며 현재 한외여과나 정밀여과 등 수투과 공정 및 battery separator 등으로의 응용이 활발하게 연구되고 있다. TIPS공정에 의해 제조된 고분자 분리막은 기존의 분리막에 비해 내열성 및 내약품성이 우수하며 여러 가지 다양한 변수로 부터 막의 미세구조를 조절할 수 있어 기공의 크기 및 모양이 조절 가능하다. 본 연구에서는 TIPS 공정을 이용한 고분자 분리막의 제조시 take-up speed와 air gap 등을 변화시켜 이에 따른 영향을 조사하였고 또한 cold stretching에 의한 구조변화를 알아보았다.

  • PDF

Nitrate Ion-Selective Membrane Electrode Based on Complex of Ammonia Modified Bakelite A-Ni(II) Nitrate (Bakelite A-Ni(II) 착물의 질산이온 선택성 막전극)

  • Kim, Hwan-Ki;Shin, Doo-Soon
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.3
    • /
    • pp.271-279
    • /
    • 1987
  • A nitrate ion-selective PVC membrane electrode based on ammonia modified bakelite A-Ni$(NO_3)_2$ complex as ion exchanger was prepared. The electrode gave a linear response with a Nernstian slope of 60mV per decade within the concentration range $1{\sim}10^{-4}$ M $KNO_3$ but nonresponse to hydrogen ion and multivalent anions. The selectivity, response time and life time of the electrode were investigated and it was found that the electrode exhibited good selectivity for four univalent anions ($Cl^-,\;Br^-,\;I^-,\;{ClO_4}^-$). Analytical application to the determination of nitrate were also studied.

  • PDF

Potentiometric Sensor for the Determination of Dibucaine in Pharmaceutical Preparations and Electrochemical Study of the Drug with BSA

  • Ensafi, Ali A.;Allafchian, A.R.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2722-2726
    • /
    • 2011
  • Plasticized poly(vinyl chloride), PVCs, with different membrane compositions tested for use in the construction of an ion-selective sensor for the determination dibucaine. A prepared membrane with dioctyl phthalate-PVC and ion-pair of N-(1-naphthyl)ethylenediamine dihydrochloride-tetraphenyl borate had a good potential to acts as a potentiometric sensor for the analysis of dibucaine. A linear relationship was obtained between potential and logC varying between $1.0{\times}10^{-6}$ and $1.0{\times}10^{-2}$ M dibucaine with a good repeatability and reproducibility. The sensor was applied for the determination of the drug in pharmaceuticals and biological fluids such as plasma and urine samples with satisfactory results. The drug electrode has also been used to study the interaction of bovine serum albumin (BSA) with dibucaine. The saturated quantities of dibucaine binding were 13.04, 5.30 and 9.70 mol/mol in 0.01, 0.02 and 0.1% of protein, respectively.

Application of Ion-Selective Electrodes to Measure Ionic Concentrations of Macronutrients in Hydroponics (수경재배 시 다량 이온 농도 측정을 위한 이온 선택성 전극의 응용)

  • Kim, Min-Su;Park, Tu-San;Cho, Seong-In
    • Journal of Biosystems Engineering
    • /
    • v.32 no.1 s.120
    • /
    • pp.37-43
    • /
    • 2007
  • This study was carried out to investigate the applicability of PVC membrane-based ion-selective electrodes for macronutrients (K, Ca, and N) by measuring of potassium, calcium, nitrate ions in hydroponic nutrient solution. The capabilities of two ion-selective membranes with varying chemical compositions for each ion were evaluated in terms of sensitivity, selectivity, and lifetime to choose sensing elements suitable for measuring typical ranges of nutrient concentrations in hydroponic solutions. The selected calcium and nitrate ion-selective membranes showed effectively sensitive responses to calcium and nitrate ions with lifetimes of 25 and 15 days, respectively. The addition of a cation additive to the potassium membrane cocktail allowed its sensitivity to be increased whereas its lifetime was reduced from 30 days to 10 days.