• Title/Summary/Keyword: PVC Membrane

검색결과 169건 처리시간 0.026초

${\beta}-Ag_3SI$ 단결정막 전극에 관한 연구 (${\beta}-Ag_3SI$ Single Crystal Membrane Electrode)

  • 신두순;이선천
    • 대한화학회지
    • /
    • 제28권2호
    • /
    • pp.86-94
    • /
    • 1984
  • ${\beta}-Ag_3SI$의 단결정을 만들어 막전극으로의 응용을 살펴보았다. 그 결과 할로겐 이온들에 대해 감응함을 알았고, 분리용액법과 혼합용액법으로 할로겐 이온들에 대한 선택계수를 얻어 이론값과 비교검토 하였으며, 전위시간 곡선으로 부터 이 전극이 유리 전극기구에 의해 전도함을 알았고, 넓은 pH 범위에서 전위가 일정한 값을 가짐을 알았다. 한편 분석화학에의 응용을 살펴 본 결과 할로겐이온의 혼합용액에서 좋은 지시전극으로 사용할 수 있음을 알았다

  • PDF

Optimal Immobilization of Penicillinase for Ion-selective Electrode

  • Hur, Moon-Hye;Kang, Hee-Jin;Min, Hye-Young;Lee, Ji-Yeun;Lee, Ki-Hyun;Ahn, Moon-Kyu
    • Archives of Pharmacal Research
    • /
    • 제20권1호
    • /
    • pp.68-71
    • /
    • 1997
  • Penicillin sensor was prepared by immobilizing penicillinase (Pcase) on $H^{+}$-selective carboxylated poly (vinyl chloride) (PVC-COOH) membrane or cellulose filter membrane. The immobilization techniques are as follows. Pcase was immobilized with GTH on $H^{+}$-selective PVC-COOH membrane or some amount of BSA was dropped on that membrane. Another method to make immobilization is to mix type I Pcase with GTH and drop on a cellulose filter membrane. According to immobilization techniques, there were some differences in response properties of enzyme electrodes, however, all electrodes responded to Pcase-resistant penicillin derivatives. Pcase immobilized on cellulose filter membrane with $H^{+}$-selective PVC membrane eletrode was more stable and more sensitive to penicillinase-resistant penicillin derivatives than any other immobilization techniques.

  • PDF

폴리에틸렌-n-헥산-벤젠계에 대한 투과속도와 용해도 파라메타 사이의 관계 (The Relationship Between the Permeation Rate and the Solubility Parameter for Polyethylene-n-Hexane-Benzene System in Pervaporation)

  • Rhim, Ji-Won
    • 멤브레인
    • /
    • 제3권3호
    • /
    • pp.136-139
    • /
    • 1993
  • It is well known that the membrane permeation in pervaporation is governed by both the chemical nature of the membrane material and the physical structure of the membrane and also the separation can be achieved by differences in either solubility, size or shape. The solubility of the penerrant in the polymeric membrane can be described qualitively by applying the Hildebrand relation [1] which relates the energy of mixing of the penerrant and the polymer material. Froehling et al. have tried to predict the swelling behavior of polymers for the systems of polyvinylchloride(PVC)-toluene-methanol, PVC-trichloroethylene-nitromethane and PVC-n-butylacetate-nitromethane[2]. The former two systems which do not show the donor/acceptor interactions upon mixing showed the successful results[2]. In addition to this technique, there are several other possible approaches to predict the swelling behaviors of polymers, such as the surface thermodynamic approach[3, 4], the comparison of the membrane polarity with the solvent polarity in terms of Dimroth's solvent polarity value[5].

  • PDF

PVC/PS 혼합 수면 전개 적층막의 기체투과 특성 (Gas Permeation Characteristics of PVC/PS Blend Laminated Membranes Prepared by Water Casting)

  • 남석태;최호상;김병식
    • 멤브레인
    • /
    • 제3권3호
    • /
    • pp.108-116
    • /
    • 1993
  • 수면전개 혼합적층막의 기체투과계수는 PS의 혼합비율이 증가함에 따라, 분리계수는 PVC의 환합비율이 증가함에 따라 증가하였다. 기체투과기구는 PS의 혼합비율이 감소함에 따라 Poiseuile-Knudsen 모델에서 solution-diffusion모델로 전이하였다. 한편 혼합박막의 구조는 공기면측에 소수성의 PS가, 수면측에는 친수성인 PVC가 배향된 직렬혼합구조였으며, 기체투과거동은 series model을 따랐다.

  • PDF

Carboxylated PVC에 페니실리나제를 고정한 효소 센서의 특성 (Characteristics of Enzyme Sensors using Carboxylated PVC for Immobilizing Penicillinase)

  • 김기묘;김영학;이은엽;허문회;안문규
    • 약학회지
    • /
    • 제40권1호
    • /
    • pp.72-77
    • /
    • 1996
  • Penicillin sensor was manufactured by immobillizing penicillinase with glutaraldehyde on the $H^+$-selective membrane based on PVC-COOH-TDDA. This membrane was not inter fered by $K^+$ ion in Pc-G potassium salt. When enzyme was immobilized with glutaraldehyde, the PVC-COOH matrix was more effective than PVC matrix. Calibration curve calculated from Nernst equation was not linear. But potential was relative to concentration of Pc-G. And maximal potentiometric velocity was also relative to concentration of Pc-G. Therefore, it may be applied to Michaelis-Menten equation. The penicillin sensor was useful for determination of Pc-G at concentration of 0.1~10mM level.

  • PDF

Effect of Surfactants on the Electrochemical Performance of Cation-Selective Membrane Electrodes

  • Oh, Hyun-Joon;Cha, Geun-Sig;Nam, Hak-hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권1호
    • /
    • pp.37-44
    • /
    • 2003
  • We examined the effect of polyether-type nonionic surfactants (Brij 35, Triton X-100, Tween 20 and Tween 80) on the potentiometric properties of sodium-, potassium- and calcium-selective membranes which are prepared with widely used ionophores and four kinds of polymer matrices [poly(vinyl chloride) (PVC), polyurethane (PU), PVC/PU blend, and silicone rubber (SR)]. It was found that the PVC-based membranes, which provide the best performance among all other matrix-based membranes in the absence of nonionic surfactants, exhibited larger change in their potentiometric properties when nonionic surfactants are added to the sample solution. On the other hand, the sodium-selective SR-based membrane with calix[4]arene, potassium-selective PVC/PU- or SR-based membrane with valinomycin, and the calcium-selective SR-based membrane with ETH 1001 provide almost identical analytical performance in the presence and absence of Tween 20 or Tween 80 surfactants. The origin of nonionic surfactants effect was also investigated by interpreting the experimental results obtained with various matrices and ionophores. The results suggest that the nonionic surfactant extracted into the membrane phase unselectively form complexes with the primary and interfering ions, resulting in increased background potential and lower binding ability for the ionophore. Such effects should result in deteriorated detection limits, reduced response slopes and lower selectivity for the primary ions.

Preparation and Characterization of Proton Conducting Membranes by Blending PVC-g-PHEA and PVA

  • Koh, Jong-Kwan;Choi, Jin-Kyu;Seo, Jin-Ah;Zeng, Xiaolei;Kim, Jong-Hak
    • Korean Membrane Journal
    • /
    • 제11권1호
    • /
    • pp.1-7
    • /
    • 2009
  • This work reports the preparation of proton conductive crosslinked polymer electrolyte membranes by blending poly(vinyl chloride)-g-poly(hydroxyl ethyl acrylate) (PVC-g-PHEA) and poly(vinyl alcohol) (PVA). The PHEA chains of the graft copolymer were crosslinked with PVA using sulfosuccinic acid (SA) via the esterification reaction between -OH of polymer matrix and -COOH of SA. The PVC-g-PHEA graft copolymer was synthesized via atom transfer radical polymerization (ATRP) using direct initiation of the secondary chlorines of PVC backbones. Ion exchange capacity (IEC) continuously increased with increasing concentrations of SA, due to the increasing portion of charged groups in the membrane. However, the water uptake increased up to 20.0 wt% of SA concentration above which it decreased monotonically. The membrane exhibited a maximum proton conductivity of 0.026 S/cm at 20.0 wt% of SA concentration, which is presumably due to competitive effect between the increase of ionic sites and the crosslinking reaction.

Minimization of Asymmetry Potential in ETH 129-Based Calcium-Selective Membrane Electrodes

  • 박성배;정사라;차근식;김해동
    • Bulletin of the Korean Chemical Society
    • /
    • 제16권11호
    • /
    • pp.1033-1037
    • /
    • 1995
  • PVC-based calcium-selective electrodes doped with ETH 129 usually suffer from a shift in the standard potential when they are in contact with protein-containing solutions (e.g. blood serum) after being calibrated with aqueous standards. The shift is due to the development of asymmetry potential in inherently symmetric PVC membranes through the contamination of outer membrane surface by proteins in the biological samples. Membranes prepared with polyurethane showed much reduced shifts in terms of standard potential. This study was performed with a flow-injection system following a protocol designed to observe minor shifts in baseline potential. Other electrochemical properties of the system, including selectivity and response slope, were similar to those obtained with regular PVC-based ones. PVC-based calcium selective membrane electrodes, doped with commonly used ETH 1001, were also tested to compare their electrochemical performances.

PVC 를 섞은 요오드화은 막전극에 관한 연구 (Study on PVC Mixed Silver Iodide Membrane Electrode)

  • 권영순;김정희;박기채
    • 대한화학회지
    • /
    • 제20권6호
    • /
    • pp.486-493
    • /
    • 1976
  • AgI 가루에 PVC를 섞어 Infrared Pellet Presser로 눌러 만든 Pellet을 이용하여 막전극을 만들고 이것을 지시전극으로 사용하여 $Ag^+$의 활동도에 대한 전위를 측정하였다. 이 막전극의 특성을 순수한 AgI pellet와 PVC로 표면을 입힌 AgI pellet을 이용한 두 막전극의 특성과 비교하였다. 이들 막전극의 은이온 활동도에 대한 감응은 은이온의 농도가 $10^{-1}$M에서 $10^{-6}$M 까지의 범위에서 좋은 직선을 보여준다. 그러나 그 중에서도 AgI가루에 PVC를 섞어서 만든 막전극이 Nernstian 기울기에 가장 잘 맞고 견고하고 장시간 사용할 수 있어 가장 우수함을 알 수 있었다. 이 전극은 은이온 이와의 다른 양이온에 대하여는 거의 감응하지 않고 할로겐화이온, 즉$I^-,CI^-,Br^-,CN^-$에 대한 감응도는 $10^{-1}$M에서 $10^{-6}$M까지 직선관계를 유지하였다. 이 전극은 단일 할로겐화이온 뿐 아니라 할로겐화이온의 혼합시료 용액의 전위차 은법적정에 지시전극으로 이용될 수 있음을 알았다.

  • PDF

A New PVC-Membrane Electrode Based on a Thia-Substituted Macrocyclic Diamide for Selective Potentiometric Determination of Silver Ion

  • Shamsipur, Mojtaba;Kazemi, Sayed Yahya;Niknam, Khodabaksh;Sharghi, Hashem
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권1호
    • /
    • pp.53-58
    • /
    • 2002
  • A new PVC-membrane electrode for $Ag^+$ ion based on a thia-substituted macrocyclic diamide has been prepared. The electrode exhibited a Nernstian response for $Ag^+$ over a wide concentration range $(1.7{\times}10^{-6}-1.0{\times}10^{-1}M)$. It has a response time <15 s and can be used for at least 3 months without divergence. The proposed membrane sensor revealed good selectivities for $Ag^+$ over a variety of metal ions and can be used in a pH range 3.0-7.5. It has been used successfully for direct determination of $Ag^+$ in different real samples and, as an indicator electrode, in the titration of silver ion.