• 제목/요약/키워드: PV model

검색결과 274건 처리시간 0.025초

주변온도와 일사량을 고려한 PV Cell의 전기적 특성 분석 (Analysis on Electrical Characteristics of PV Cells considering Ambient Temperature and Irradiance Level)

  • 박현아;김효성
    • 전력전자학회논문지
    • /
    • 제21권6호
    • /
    • pp.481-485
    • /
    • 2016
  • When analyzing economic feasibility for installing a PV generation plant at a certain location, the prediction of possible annual power production at the site using the target PV panels should be conducted on the basis of the local weather data provided by a local weather forecasting office. In addition, the prediction of PV generating power under certain weather conditions is useful for fault diagnosis and performance evaluation of PV generation plants during actual operation. This study analyzes PV cell characteristics according to a variety of weather conditions, including ambient temperature and irradiance level. From the analysis and simulation results, this work establishes a proper model that can predict the output characteristics of PV cells under changes in weather conditions.

유한 요소 해석 프로그램을 이용한 모듈 내 온도 분포 예측 (Prediction of temperature distribution in PV module using finite element method)

  • 박영은;정태희;고석환;주영철;김준태;강기환
    • 한국태양에너지학회 논문집
    • /
    • 제36권2호
    • /
    • pp.65-72
    • /
    • 2016
  • PV module is installed in various outdoor conditions such as solar irradiation, ambient temperature, wind speed and etc. Increase in solar cell temperature within PV module aggravates the behaviour and durability of PV module. It is difficult to measure temperature among respective PV module components during PV module operating, because the temperature within PV module depends on thermal characteristics of PV module components materials as well as operating conditions such as irradiation, outdoor temperature, wind etc. In this paper, simulation by using finite element method is conducted to predict the temperature of each components within PV module installed to outdoor circumstance. PV module structure based on conventional crystalline Si module is designed and the measured values of thickness and thermal parameters of component materials are used. The validation of simulation model is confirmed by comparing the calculated results with the measured temperatures data of PV module. The simulation model is also applied to estimate the thermal radiation of PV module by front glass and back sheet.

태양광에너지 중심의 신재생에너지 기술경제학 모델링 연구 (The technical-economic study of solar PV and renewable energy)

  • 이문수;이민진;이영희
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.136.1-136.1
    • /
    • 2011
  • An energy modeling analysis method currently has been considered as a new approach for energy policy research, because the importance of renewable energy use has been emphasized more and more. This study used RETScreen model as a clean energy decision making methodology for adaptation to climate change and elimination of various pollutions. This modeling method includes five step standard analysis; energy model, cost analysis, GHG analysis, financial analysis, and sensitivity & risk analysis and it also assesses both conventional and modern energy sources and technologies. This methodology for the photovoltaic(PV) energy modeling is used to evaluate the energy production, financial performance and GHG emissions reduction of photovoltaic projects. In addition, the PV application systems are classified into three basic applications; On-grid system, Off-grid system and water pumping system. This study assesses the renewable energy techno-economic modeling method with the feasibility analysis result of 10 MW PV power plant in Abu Dhabi in United Arab Emirates. Furthermore this study stresses the importance of renewable energy model research by applying to domestic PV power plant which is now in preparation.

  • PDF

Improved Photovoltaic MATLAB Modeling Accuracy by Adding Wind Speed Effect

  • An, Dong-Soon;Poudel, Prasis;Bae, Sang-Hyun;Park, Kyung-Woo;Jang, Bongseog
    • 통합자연과학논문집
    • /
    • 제10권1호
    • /
    • pp.58-63
    • /
    • 2017
  • Photovoltaic (PV) are generally modeled using mathematical equations that describe the PV system behavior. Most of the modeling approach is very simple in terms of that PV module temperature is calculated from nominal constant cell temperature such as ambient temperature and incoming solar irradiance. In this paper, we newly present MATLAB model particularly embedding the effect of wind speed to describe more accurate cell temperature. For analyses and validate purpose of the proposed model, solar power is obtained and compared with and without wind speed from the 50Wp PV module provided by vendor datasheet. In the simulation result, we found that power output of the module is increased to 0.37% in terms of cell temperature a degreed down when we consider the wind speed in the model. This result is well corresponded with the well-known fact that normal PV is 0.4% power changed by cell temperature a degree difference. Therefore it shows that our modeling method with wind speed is more appropriate than the methods without the wind speed effect.

태양광 컨버터 시스템의 과도응답 개선을 위한 비선형 적응제어 및 안정성 해석 (Nonlinear Adaptive Control and Stability Analysis for Improving Transient Response of Photovoltaic Converter Systems)

  • 조현철;유수복;이권순
    • 제어로봇시스템학회논문지
    • /
    • 제15권12호
    • /
    • pp.1175-1183
    • /
    • 2009
  • In photovoltaic(PV) generator systems, DC-DC converters are significantly considered for control system performance in power quality point of view. This paper presents a novel adaptive control method for DC-DC converters applied in PV generator systems. First, we derive a state-space average model of the converter system and then propose a reset control methodology to enhance transient response performance for time-varying PV systems. For estimating parameters of a reset control, a gradient descent optimization is utilized and an adjustment rule of them are derived respectively. An objective of the optimization is that characteristic equation of an augmented system model which is formed with an converter system model and an reset control is to trace a predefined polynomial given as a reference characteristic model. Next, we accomplish stability analysis by means of a well-known Lyapunov theory for nonlinear converter systems including time-varying voltage excitation from a PV generator. Numerical simulation demonstrates reliability of our control methodology and its superiority by comparison to a traditional control strategy.

퓨즈협조에 대한 태양광 발전의 영향 분석 (An Analysis of the Impact of the PV generation on Fuse Coordination)

  • 조해인;서훈철;김철환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.474_475
    • /
    • 2009
  • Recently the grid-connected PV system is increased in the power system. According to this trend, protection coordination issues are becoming more important when the PV generation is connected to the power system. In this paper, we model the PV system using EMTP/ATPDRAW and analyze the impact of the PV generation for the fuse coordination.

  • PDF

Novel Peak-Power Tracking Algorithm for Photovoltaic Conversion System

  • Kim, Sil-Keun;Hong, Soon-Ill;Hong, Jeng-Pyo
    • 조명전기설비학회논문지
    • /
    • 제21권9호
    • /
    • pp.25-31
    • /
    • 2007
  • In this paper, a novel MPPT(Maximum Power Point Tracking) algorithm for power of PV(Photovoltaic) systems is presented using a boost converter for a connected single phase inverter. On the basic principle of power generation for the PV(photovoltaic) module, the model of a PV system is presented. On the basis of this model, simulation of this PV system and algorithms for maximum power point tracking are described by utilizing a boost converter to adjust the output voltage of the PV module. Based on output power of a boost converter, single phase inverter uses predicted current control to control four IGBT#s switch in full bridge. Furthermore, a low cost control system for solar energy conversion using the DSP is developed, based on the boost converter to adjust the output voltage of the PV module. The effectiveness of the proposed inverter system is confirmed experimentally and by means of simulation. Finally, experimental results confirm the superior performance of the proposed method.

단독주택 태양광 발전과 냉방수요를 반영한 전력 최적운용 전략 연구 (Study on Optimal Control Algorithm of Electricity Use in a Single Family House Model Reflecting PV Power Generation and Cooling Demand)

  • 서정아;신영기;이경호
    • 설비공학논문집
    • /
    • 제28권10호
    • /
    • pp.381-386
    • /
    • 2016
  • An optimization algorithm is developed based on a simulation case of a single family house model equipped with PV arrays. To increase the nationwide use of PV power generation facilities, a market-competitive electricity price needs to be introduced, which is determined based on the time of use. In this study, quadratic programming optimization was applied to minimize the electricity bill while maintaining the indoor temperature within allowable error bounds. For optimization, it is assumed that the weather and electricity demand are predicted. An EnergyPlus-based house model was approximated by using an equivalent RC circuit model for application as a linear constraint to the optimization. Based on the RC model, model predictive control was applied to the management of the cooling load and electricity for the first week of August. The result shows that more than 25% of electricity consumed for cooling can be saved by allowing excursions of temperature error within an affordable range. In addition, profit can be made by reselling electricity to the main grid energy supplier during peak hours.

계통연계형 태양광발전시스템의 동특성 모델링 및 모의해석 (Modeling and Simulation Analysis of Grid-Connected Photovoltaic Generation System in terms of Dynamic behavior)

  • 김응상;김슬기
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.127-131
    • /
    • 2005
  • The paper addresses modeling and analysis of a grid-connected photovoltaic generation system (PV system). PSCAD/EMIDC. an industry standard simulation tool for studying the transient behavior of electric power system and apparatus. is used to conduct all aspects of model implementation and to carry out extensive simulation study. An equivalent circuit model of a solar cell has been used for modeling solar array. A PWM voltage source inverter (VSI) and its current control scheme have been implemented. A maximum power point tracking (MPPT) technique is employed for drawing the maximum available energy from the PV array. Comprehensive simulation results are presented to examine PV array behaviors and PV system control performance in response to irradiation changes. In addition, dynamic responses of PV array and system to network fault conditions are simulated and analysed

  • PDF

EMTDC/PSCAD를 이용한 PV Array의 부분음영 시뮬레이션 기법 개발 (Dvelopment of Simulation Method for Partial Shadow of PV Array using EMTDC/PSCAD)

  • 박해용;박영길;박민원;유인근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.308-310
    • /
    • 2005
  • In recent years, the research and development for the photovoltaic(PV) energy system are making rapidly progress around the world and specially this country, too due the deregulation law for the renewable energy system seems to be born sooner or later. In PV generation system, the partially shaded PV array is the one of the worst case which reduces the efficiency of the total PV generation system. The partial shaded condition is the result of shadowing by cloud and dust building of on the surface of the panel. Some structural elements, such as antennas, booms etc. is also the reason of the shadowing. Even if only a small part of PV is shaded, the overall generation power of PV is significantly decreased. Therefore, several researchers who are focusing on the PV generation system take a time for the research related with the shadowing problem of PV array. In this paper, authors have developed the method which users can achieved the modeling of partially shaded PV array with. With several papers authors have already announced the availability of the EMTDC/PSCAD PV panel model component. This research result is the developed version of the previous papers.

  • PDF