• Title/Summary/Keyword: PV Source

Search Result 212, Processing Time 0.032 seconds

Analysis of the Effects of the Irradiation and Cell-Temperature on the Dynamic Responses of PV System with MPPT (태양광의 세기와 셀 온도가 최대전력 추종을 하는 태양광 발전의 동특성에 미치는 영향 분석)

  • Loc, Nguyen Khanh;Moon, Dae-Seong;Seo, Jae-Jin;Won, Dong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1142-1143
    • /
    • 2008
  • As well known, the maximum power point tracking (MPPT) is an important role in photovoltaic (PV) power systems. MPPT finds and maintains the operation of PV at the maximum power point when the irradiation and cell-temperature change. In this paper, the studied system includes a PV array, a Buck-Boost DC/DC converter, a DC/AC inverter and it is connected to the three phase power system. The solar array operates as a non-linear voltage source. The P&O algorithm with power feed-back is used to control the operating point of PV array at the maximum power point. The effects of irradiation and cell-temperature on the dynamic responses are also considered.

  • PDF

Implementation of the Stand-Alone PV Generation System for the LED Road Sign (LED 교통 표지판용 독립형 태양광 발전 시스템의 구현)

  • Lee S. R.;Jeon C. H.;Shin Y. C.;Lee K. M.
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.206-209
    • /
    • 2003
  • This paper deals with stand-alone PV power generation system with charge and discharge controller for the LED road sign. Main power source of PV system are generally solar cell and battery. Therefore PV system can be classified into variable types in accordance with connection type between battery and solar sell. Mainly used on of them is direct connection type which has advantage such as simple structure and simple controller. To verify the proposed PV generation system for the LED road sign, the detail simulation and experiment results indicate that operating characteristics are verified by experiment with a laboratory prototype in this paper.

  • PDF

Harmonic Impact Studies of Grid-Connected Wind Power and PV Generation Systems (계통연계 풍력 및 태양광발전시스템 고조파 영향 검토)

  • Lee, Sang-Min;Jung, Hyong-Mo;Yu, Gwon-Jong;Lee, Kang-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2185-2191
    • /
    • 2009
  • Wind power and photovoltaic(PV) generation systems are the fastest growing sources of renewable energy. The nonlinear devices, such as power electronic converter or inverter, of wind power and PV generation systems are the source of harmonics in power systems. The harmonic-related problems can have significant detrimental effects in the power system, such as capacitor heating, data communication interference, rotating equipment heating, transformer heating, relay misoperation and switchgear failure. There is a greater need for harmonic analysis that can properly maintain the power quality. By measuring harmonics of existing wind power and PV generation systems as harmonics modeling, the studies were made to see the harmonic impact of grid-connected wind power and PV generation systems.

Design and Implementation of Modified Current Source Based Hybrid DC - DC Converters for Electric Vehicle Applications

  • Selvaganapathi, S.;Senthilkumar, A.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.2
    • /
    • pp.57-68
    • /
    • 2016
  • In this study, we present the modern hybrid system based power generation for electric vehicle applications. We describe the hybrid structure of modified current source based DC - DC converters used to extract the maximum power from Photovoltaic (PV) and Fuel Cell system. Due to reduced dc-link capacitor requirement and higher reliability, the current source inverters (CSI) better compared to the voltage source based inverter. The novel control strategy includes Distributed Maximum Power Point Tracking (DMPPT) for photovoltaic (PV) and fuel cell power generation system. The proposed DC - DC converters have been analyzed in both buck and boost mode of operation under duty cycle 0.5>d, 0.5<d<1 and 0.5<d for capable electric vehicle applications. The proposed topology benefits include one common DC-AC inverter that interposes the generated power to supply the charge for the sharing of load in a system of hybrid supply with photovoltaic panels and fuel cell PEM. An improved control of Direct Torque and Flux Control (DTFC) based induction motor fed by current source converters for electric vehicle.In order to achieve better performance in terms of speed, power and miles per gallon for the expert, to accepting high regenerative braking current as well as persistent high dynamics driving performance is required. A simulation model for the hybrid power generation system based electric vehicle has been developed by using MATLAB/Simulink. The Direct Torque and Flux Control (DTFC) is planned using Xilinx ISE software tool in addition to a Modelsim 6.3 software tool that is used for simulation purposes. The FPGA based pulse generation is used to control the induction motor for electric vehicle applications. FPGA has been implemented, in order to verify the minimal error between the simulation results of MATLAB/Simulink and experimental results.

A Study on Synchronized AC Power Source Voltage Regulator of Voltage Fed Inverter using a Photovoltatic effect (PV효과를 이용한 전압형 인버어터 전원동기 전압 조정기에 관한 연구)

  • Hwang, Lak-Hoon
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.8
    • /
    • pp.120-129
    • /
    • 1998
  • In this paper represented uninterruptible power sypply(UPS) equipment maintaining constant output voltage, using a pulse width modulation(PWM) voltage fed inverter, as power source disconnection, voltage variation and output current variation with load variation. This system is driven by being synchronized voltage fed inverter and AC source, and in the steady state of power source charge battery connected to DC side with solar cell using a Photovoltaic (PV) that it was so called constant voltage charge. In addition, better output waveform was generated because of PWM(pulse width Modulation) method, and it was Proved to test by experiment maintained constant output voltage regardless of AC source disconnection, load variation, and voltage variation of AC power source.

  • PDF

Control of Single-Phase Grid-Connected Photovoltaic System using a Z-Source Inverter (Z-소스 인버터를 사용한 단상 계통 연계형 태양광 시스템 제어)

  • Chun, Tae-Won;Tran, Quang-Vinh;Kim, Heung-Geun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.369-375
    • /
    • 2008
  • In this paper, a method for controlling the a single-phase grid-connected photovoltaic(PV) system using Z-source inverter (ZSI) is proposed. The operating region of grid-connected ZSI system with a variation of PV output voltage are analyzed by considering the voltage stress across switching devices. The switching patterns for controlling effectively the shoot-through time while reducing the switching loss are suggested. Both the simulation studies and experimental results with 32-bit DSP are carried out to verify the performances of proposed system.

Performance Evaluation Study of Solarwall-Photovoltaic Module to Generate Solar Electric Power (SWPV 태양 열-전기 복합생산 모듈 성능평가 연구)

  • Naveed Ahmed T;Kang E. C.;Lee E. J.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.397-402
    • /
    • 2005
  • Photovoltaic (PV) module can generate electricity using sunlight without causing any environmental degradation. Due to higher fossil fuel prices and environmental awareness, PV applications are becoming more popular as clean source of electricity generation. PV output is sensitive to the operating temperature and can be drastically affected in Building Integrated PV (BIPV) systems. PV Solarwall (SWPV) combination and PV systems have been evaluated in this study for improvement in electrical output and system costs. PV modules under forced ventilation. A 75W polycrystalline silicon PV module was fixed on SW in front of the ventilation fan as it was indicated to be the coolest position on the SW in phoenix simulations. The effectiveness of cooling by means of the forced ventilating air stream has been studied experimentally. The results indicate that there appears to be significant difference in temperature as well as electricity output comparing the SWPV and BIPV options. Electrical output power recovered is about $4\%$ during the typical day of the month of February. RETScreen(R) analysis of a 3kW PV system hypothetically located at Taegu has shown that with typical temperature reduction of $15^{{\circ}C$, it is possible to reduce the simple payback periods by one year. The work described in this paper may be viewed as an appraisal of a SWPV system based on its improved electrical and financial performances due to its ability to operate at relatively lower temperatures.

  • PDF

Characteristic PCS of Inverter by Boost Converter of PV Generation (태양광 발전 부스트 컨버터를 이용한 인버터 PCS 특성)

  • Hwang, Lark-Hoon;Na, Seung-kwon;Oh, Sang-hak
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.6
    • /
    • pp.654-664
    • /
    • 2018
  • In this paper, this system is operated by PCS that is driven by being synchronized voltage fed inverter and AC source, and in the steady state of power source charge battery connected to DC side with solar cell using a photovoltaic (PV) that it was so called constant voltage charge. it can cause the effect of energy saving of electric power, from 10 to 20%. and through a normal operation of electric energy storage system (EESS). In addition, better output waveform was generated because of pulse width modulation (PWM) method, and it was Proved to test by experiment maintained constant output voltage regardless of AC source disconnection, load variation, and voltage variation of AC power source.

Single-Inductor, Multiple-Input-Single-Output Converter Based Energy Mixer for Power Packet Distribution System

  • Reza, C.M.F.S.;Lu, Dylan Dah-Chuan;Qin, Ling;Qi, Jian
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1479-1488
    • /
    • 2018
  • Power packet (PP) distribution system distributes power to different loads that share the same distribution cable in a packetized form. When compared with conventional power systems, a PP distribution system (PPDS) can reduce standby power, eliminate Point-of-Load (PoL) power conversion, and intelligently control the load demand from the source side. Due to the absence of PoL conversion, when multiple power sources at different voltage levels and conditioning requirements jointly send power to various loads at different voltage ratings, the generated voltage has an irregular shape. A large filter at each of the load sides is required to reduce such a large voltage ripple. In this paper, a single-inductor, multiple-input-single-output converter structure based multiple-energy-source mixer is proposed. It combines PP generation, maximum power point tracking (MPPT) of renewable energy sources (RESs) and filtering at the source side. To demonstrate the possible renewable energy integration, a PV panel is used as a power source together with other constant voltage sources. The PV power is approximately tracked using the constant voltage method and it is used for each of the PP generations. The proposed PP distribution system is experimentally verified and it is shown that a conventional PI controller is sufficient for stable system operation.

Implementation of a High Efficiency Grid-Tied Multi-Level Photovoltaic Power Conditioning System Using Phase Shifted H-Bridge Modules

  • Lee, Jong-Pil;Min, Byung-Duk;Yoo, Dong-Wook
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.296-303
    • /
    • 2013
  • This paper proposes a high efficiency three-phase cascaded phase shifted H-bridge multi-level inverter without DC/DC converters for grid-tied multi string photovoltaic (PV) applications. The cascaded H-bridge topology is suitable for PV applications since each PV module can act as a separate DC source for each cascaded H-bridge module. The proposed phase shifted H-bridge multi-level topology offers advantages such as operation at a lower switching frequency and a lower current ripple when compared to conventional two level topologies. It is also shown that low ripple sinusoidal current waveforms are generated with a unity power factor. The control algorithm permits the independent control of each DC link voltage with a maximum power point for each string of PV modules. The use of the controller area network (CAN) communication protocol for H-bridge multi-level inverters, along with localized PWM generation and PV voltage regulation are implemented. It is also shown that the expansion and modularization capabilities of the H-bridge modules are improved since the individual inverter modules operate more independently. The proposed topology is implemented for a three phase 240kW multi-level PV power conditioning system (PCS) which has 40kW H-bridge modules. The experimental results show that the proposed topology has good performance.