• Title/Summary/Keyword: PV Cell

Search Result 505, Processing Time 0.04 seconds

Implementation of the Stand-Alone PV Generation System for the LED Road Sign (LED 교통 표지판용 독립형 태양광 발전 시스템의 구현)

  • Lee S. R.;Jeon C. H.;Shin Y. C.;Lee K. M.
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.206-209
    • /
    • 2003
  • This paper deals with stand-alone PV power generation system with charge and discharge controller for the LED road sign. Main power source of PV system are generally solar cell and battery. Therefore PV system can be classified into variable types in accordance with connection type between battery and solar sell. Mainly used on of them is direct connection type which has advantage such as simple structure and simple controller. To verify the proposed PV generation system for the LED road sign, the detail simulation and experiment results indicate that operating characteristics are verified by experiment with a laboratory prototype in this paper.

  • PDF

A CONSIDERATION ON PHOTOVOLTAIC POWER GENERATION SYSTEMS

  • Sugisaka, Masanori;Nakanishi, Kiyokazu;Mitsuo, Noriaki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.468-468
    • /
    • 2000
  • In our laboratory, the control aspects are investigated in the photovoltaic power generation systems (PV systems). The PV system is very good for earth environment, but if it connects to power network system, many problems are raised (protection, voltage, harmonics etc.). In this paper, we present the result of the basic studies for the building of the PV system that amplifies the electric energy obtained from the solar cell. We consider electronic circuits in order to protect the PV system from power surge induced by lightning and also design an electronic circuit in order to detect defaults in the power network system. We would like to integrate these circuits into the PV system by considering its control equipment build by 8-bit microcomputer using various control theory (fuzzy, neural network etc.).

  • PDF

Impedance Analysis and Surge Characteristics of PV Array (태양전지 어레이의 임피던스 분석과 서지 특성 고찰)

  • Lee, Ki-Ok;So, Jeong-Hoon;Jung, Myung-Woong;Yu, Gwon-Jong;Choi, Ju-Yeop;Ahn, Hyun-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1347-1349
    • /
    • 2003
  • PV array, which is generally installed in the outside, has the possibility to be damaged by high voltage doc to lightning. Because the surge characteristic of PV array has not been fully identified yet, there is the very important issue whether PV array should be connected with ground or not. In this paper, a basic model of PV array is provided considering solar cell's barrier capacitance and ground capacitance for analysis of surge characteristics.

  • PDF

Prediction of temperature distribution in PV module using finite element method (유한 요소 해석 프로그램을 이용한 모듈 내 온도 분포 예측)

  • Park, Young-Eun;Jung, Tae-Hee;Go, Seok-Hwan;Ju, Young-Chul;Kim, Jun-Tae;Kang, Gi-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.2
    • /
    • pp.65-72
    • /
    • 2016
  • PV module is installed in various outdoor conditions such as solar irradiation, ambient temperature, wind speed and etc. Increase in solar cell temperature within PV module aggravates the behaviour and durability of PV module. It is difficult to measure temperature among respective PV module components during PV module operating, because the temperature within PV module depends on thermal characteristics of PV module components materials as well as operating conditions such as irradiation, outdoor temperature, wind etc. In this paper, simulation by using finite element method is conducted to predict the temperature of each components within PV module installed to outdoor circumstance. PV module structure based on conventional crystalline Si module is designed and the measured values of thickness and thermal parameters of component materials are used. The validation of simulation model is confirmed by comparing the calculated results with the measured temperatures data of PV module. The simulation model is also applied to estimate the thermal radiation of PV module by front glass and back sheet.

Precursors for the Ethylene Evolution of Pseudornonas syringae pv. Phaseolicola (Pseudomonas syringae pv. Phaseolicola에 의한 Ethylene 생성에서의 전구물질)

  • Bae, Moo;Kweon, Hea-Young
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.1
    • /
    • pp.14-20
    • /
    • 1991
  • - The purpose of this work is to investigate the effects of various substrates on biosynthesis of ethylene by the Kudzu strain of Pseudomonas syn'ngae pv. Phaseolicola causing halo blight. In the intact cell of P. sym'ngue, optimal condition for ethylene production was achieved at p1-I 7.5 and $30^{\circ}C$ for 9 to 10 hours of culture. Ethylene was most effectively produced from amino acids such as Asn, Gln, Asp ans Glu, compared to those of various kinds of sugars. While ethylene production from $\alpha$-ketoglutarate ($\alpha$-KG) was gradually increased throughout 51 hours incubation period tested. Ethylene production derived from citrate, $\alpha$-KG and oxalacetate as well as a few amino acids was further enhanced by the addition of histidine or arginine. In cell-free ethylene-forming system, ethylene was most effectively produced from $\alpha$-KG, compared to those from citrate, oxalacetate, Glu, Arg, or Asp, at 0.5 mM among the range from 0.25 mM to 5 mM. Anlinooxyacetate, an inhibitor of a pyridoxal phosphate-linked enzyme, completely inhibited ethylene evolution derived from Glu but not affect that derived from $\alpha$-KG. The results obtained in this work suggest that $\alpha$-KG might be a direct precursor of ethylene production in this organism than any other substrates tested.

  • PDF

A Simulation of Photocurrent Loss by Reflectance of the Front Glass and EVA in the Photovoltaic Module (전면 유리와 EVA의 광 반사에 의한 PV모듈의 광전류 손실 예측 시뮬레이션)

  • Lee, Sang-Hun;Song, Hee-Eun;Kang, Gi-Hwan;Ahn, Hyung-Keun;Han, Deuk-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.1
    • /
    • pp.76-82
    • /
    • 2013
  • The solar cell is a device to convert light energy into electric, which supplies power to the external load when exposed to the incident light. The photocurrent and voltage occurred in the device are significant factors to decide the output power of solar cells. The crystalline silicon solar cell module has photocurrent loss due to light reflections on the glass and EVA(Ethylene Vinyl Acetate). These photocurrent loss would be a hinderance for high-efficiency solar cell module. In this paper, the quantitative analysis for the photocurrent losses in the 300-1200 wavelength region was performed. The simulation method with MATLAB was used to analyze the reflection on a front glass and EVA layer. To investigate the intensity of light that reached solar cells in PV(Photovoltaic) module, the reflectance and transmittance of PV modules was calculated using the Fresnel equations. The simulated photocurrent in each wavelength was compared with the output of real solar cells and the manufactured PV module to evaluate the reliability of simulation. As a result of the simulation, We proved that the optical loss largely occurred in wavelengths between 300 and 400 nm.

A Study on the Power Performance Measurement of Transparent Thin-film PV Windows of BIPV Depending on the Inclined Angle (건물일체형 투명 PV복층창의 설치조건에 따른 단위출력당 발전특성 분석연구)

  • An, Young-Sub;Song, Jong-Hwa;Kim, Seok-Ge;Lee, Sung-Jin;Yoon, Jong-Ho
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.55-60
    • /
    • 2008
  • This study is on the analysis of power output of transparent thin-film PV windows which are integrated into the building envelope instead of traditional windows. 3 installation angles of vertical, horizontal and $30^{\circ}C$ inclination are investigated. To measure power output of PV windows, full scale mock-up house was designed and constructed. The power performance of PV window system was analyzed for horizontal angle, declination angle and vertical angle according to incline angle. Monitoring data are gathered from November 2006 to August 2007 and statistical analysis is performed to analysis a characteristics of power performance of transparent PV windows. Results show that annual power output of PV window with horizontal angle is 844.4kWh/kWp/year, declination angle 1,060kWh/kWp/year and vertical angle 431.6 kWh/kWp/year.

  • PDF

Status of Photovoltaics in Korea (국내 태양광발전 산업 현황)

  • Kim, Hyun-Il;Kang, Gi-Hwan;Park, Kyung-Eun;Yu, Gwon-Jong;Suh, Seung-Jik
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.196-201
    • /
    • 2008
  • The photovoltaic(PV) industry has been growing around the PV advanced countries such as Japan, Germany, Europe and USA. In recent years, China became a strong performer in the world PV market share, increasing solar cell production rapidly The global photovoltaic (PV) market grew by over 40% in 2007, with approximately 2.3GW of newly installed capacity. The global cumulative installed capacity has reached 9GW. The cumulative installed power of PV system in Korea tremendously increased to 74.7MW at the end of 2007. Up to Sep. 2008 The cumulative installed power of PV system in Korea is approximately 377MW. The value chain of photovoltaic in Korea is creating actively. Thus Korea is predicted to see 800MW of modules installed in 2010. Korea's renewable energy is also targeting to take 5% of the total energy consumption by 2011.

  • PDF

Improving the power of PV module by a surface cooling system (표면냉각을 통한 PV 모듈의 출력 향상에 관한 연구)

  • Kim, Dae-Hyun;Kim, Dong-Jun
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.6
    • /
    • pp.88-93
    • /
    • 2009
  • This study was conducted to improve the power of PV module using a surface cooling system One of the unique characteristics of PV module is power drop as a module surface temperature increases due to the characteristics of crystalline silicon used in a solar cell. To overcome the output power reduction by temperature effect, module surface cooling using water circulation was performed. By cooling effect, module surface temperature drops maximally $20.3^{\circ}C$ predicting more than 10% power enhancement. Maximum deviation of voltage and current between a control and cooled module differed by 5.1 V and O.9A respectively. The maximum power enhancement by cooling system was 12.4% compared with a control module. In addition, cooling system can wash the module surface by water circulation so that extra power up of PV module can be achieved by removing particles on the surface which interfere solar radiation on the cells. Cooling system, besides, can reduce the maintenance cost and prevent accidents as a safety precaution while cleaning works. This system can be applied to the existing photovoltaic power generation facilities without any difficulties as well.

Electrical Characteristics Analysis for single-crystalline and multi-crystalline PV module optical character. (단결정과 다결정 태양전지 모듈의 광학적 특성에 따른 전기적 출력 특성 분석)

  • Lee, Jin-Seob;Kang, Gi-Hwan;Park, Chi-Hong;Yu, Gwon-Jong;Ahn, Hyunggun;Han, Deuk-Young
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1100-1101
    • /
    • 2008
  • After lamination process, Isc is increased by sheet reflection. This paper presents the electrical output characteristics by back sheet reflection. The experiments was conducted by using single crystalline and multi crystalline PV module. The reflection area of single crystalline PV module is larger than multi one due to the difference of solar cell manufacturing. The experiments show that the increased performance ratio of single crystalline PV module output power is 1.55% rather than that of multi crystalline PV module output power is 1.13%. In addition, it is expected that the output power of single one rather than multi-one is increased by the lower temperature when the PV module is installed outside. The results can be reconsidered by the test material and test process. Back sheet used for humidity prevention makes PV module output power increasing.

  • PDF