• Title/Summary/Keyword: PV/Thermal collector units

Search Result 3, Processing Time 0.015 seconds

An Experimental Study of Performance Improvement of Air Type PV/T Collector Units (실험에 의한 공기식 태양광·열 복합 유닛의 성능 비교)

  • Kim, Jin-Hee;Yang, Yeon-Won;Kim, Jun-Tae
    • KIEAE Journal
    • /
    • v.7 no.6
    • /
    • pp.17-22
    • /
    • 2007
  • The integration of PV modules into building facades or roof could raise their temperature that results in the reduction of PV system's electrical power generation. Hot air can be extracted from the space between PV modules and building envelope, and used for heating in buildings. The extraction of hot air from the space will enhance the performance of BIPV systems. The solar collector utilizing these two aspects is called PV/T(photovoltaic/thermal) solar collector. This paper compares the experimental performance of two different types of air type PV/T collector units: the base case of a collector unit with 10cm gap for forced ventilation and the other unit with copper pin attached to PV module to enhance its thermal performance. The experimental results shows that the base case unit had the overall efficiency of 41.9% and the improved unit with copper pin attached to PV module had 50.1% efficiency. For these air type PV/T units, the forced ventilation of the air space improved the electrical performance as well as the thermal performance.

The Thermal Performance Comparison of BIPVT Collector Applied on Roofs and Facades (건물 적용 유형별 BIPVT 집열기 열적 실험성능 비교)

  • Gang, Jun-Gu;Kim, Jin-Hui;Kim, Jun-Tae
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2009.11a
    • /
    • pp.269-272
    • /
    • 2009
  • The temperature of PV modules that integrated into building facades or roof increases that could reduce the electrical efficiency of the PV system. In order to incresae PV system's efficiency it is very important to remove the heat from the PV modules. For this purpose, hot air can be extracted from the space between PV modules and building envelope, and used for heating in buildings. The solar collector utilizing this thermal effect is called photovoltaic-thermal(PVT) solar collector. This paper compares the experimental performance of building-integrated PVT collectors that applied on building roof and facade. There are two different case: a roof-integrated PVT type and a facade-integrated PVT type. The experimental results show that the collected thermal energy of the roof-integrated type was 24% higher, compared to that of the facade-integrated.

  • PDF

Pre-Analysis CFD Simulation of Air Path Design for Soundproof Photovoltaic-Thermal Wall (방음벽 PVT의 공기유로 설계를 위한 CFD 시뮬레이션 사전 분석 연구)

  • Kim, Yu-Jin;Kim, Ki-Bong;Lee, Euy-Joon;Kang, Eun-Chul
    • New & Renewable Energy
    • /
    • v.17 no.3
    • /
    • pp.1-7
    • /
    • 2021
  • The Korean government announced various energy policies, such as the to reduce 37% of the business-as-usual (BAU) greenhouse gas emissions by 2030. The policies aim to increase the renewable electricity generation ratio to 20% by 2030. PVT is a hybrid technology, which combines photovoltaic (PV) and solar collectors. It is capable of generating electricity and thermal energy simultaneously. It has a great potential to be used as a renewable and clean solar energy. However, there exists a shortage of space for the installation of PVT systems in Korea. To overcome this, in this paper proposes four types of soundproof wall PVT air channels, which were designed and optimized, based on the CFD (Computation Fluid Dynamic) analysis results. The thermal energy generation for multiple PVT units connected in series and pressure drop sensitivity were analyzed, depending on inlet velocity.