• Title/Summary/Keyword: PU foam

Search Result 76, Processing Time 0.025 seconds

BIOFILTRATION OF GASEOUS TOLUENE USING ADSORBENT CONTAINING POLYURETHANE FOAM MEDIA

  • Amarsanaa, Altangerel;Shin, Won-Sik;Choi, Jeong-Hak;Choi, Sang-June
    • Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.1-13
    • /
    • 2006
  • In this study, conventional biofilters packed with flexible synthetic polyurethane (PU) foam carriers were operated to remove toluene from a contaminated air stream. PU foams containing various adsorbents (e.g., zeolite, sepiolite, dolomite and barite) were synthesized for the biofilter media and their adsorption characteristics of toluene were determined. Adsorption capacity of PU-adsorbent foam was in the order of PU-dolomite ${\approx}$ PU-zeolite > PU-sepiolite > PU-barite. During the biofiltration experiment, influent toluene concentration was in the range of 0-160 ppm and EBRT (i.e., empty bed residence time) was 45 seconds. Pressure drop of the biofilter bed was 4-5 mm $H_2O/m$ column height. The maximum removal capacity was in the order of PU-dolomite > PU-zeolite > PU-sepiolite > PU-barite, while the complete removal capacity was in the order of PU-dolomite > PU-sepiolite > PU-zeolite > PU-barite. The better biofiltration performance in PU-dolomite foam was because PU-dolomite foam had lower density and higher porosity than the others providing favorable conditions for microbial growth. The results of biodegradation kinetic analysis showed that PU-dolomite foam had higher maximum removal rate ($V_m\;=\;11.04\;g$ toluene/kg dry material/day) and saturation constant ($K_s\;=\;26.57\;ppm$) than the other PU foams. This supports that PU-dolomite foam was better than the others for biofilteration of toluene.

Flammability and Released Toxic Halogen Gases during Combustion of Flame-Retardant Flexible Polyurethane Foam (난연 연질 폴리우레탄 반도체의 난연성과 연소시 발생되는 유독성 할로겐 기체 검출에 관한 연구)

  • 전종한
    • Journal of the Korean Society of Safety
    • /
    • v.6 no.1
    • /
    • pp.26-30
    • /
    • 1991
  • Flammability, and released toxic halogen gases during combustion about two kinds of flame-retardant flexible foam(F.R. flexible PV foam) were investigated. One of the above was F.R. flexible PU foam with the containment of halogen and the other was manufactured with pure flexible PU foam in aqueous solution of alumina trihydrate(ATH) and dried 4 hours at 10$0^{\circ}C$. Flammability by L.O.I and UL94 HF-1 of the two materials were similarly shown. And combustion gases were analyzed with GC-Mass. HCI, CI$_2$ and HF were detected at both halogen being contained F.R. flexible PU foam and ATH dolng one The reason, to find halogen gases from burning ATH-containing F, R. flexible PU foam which wasn't used for any halogenated F.R., could be considered as by using trichlorofluoromethane with blowing agent to make PU foam. The relative quanity of relesed halogen gases of F.R. flexible PU foam with the containment of halogen had been indicated tree times HCI and CI$_2$, two times HF than ATH containing, respectively.

  • PDF

Antifungal Properties of Self-actuated Photocatalyst Coated PU Foam (자기구동형 광촉매 코팅에 의한 PU발포체의 항곰팡이 특성)

  • Choi, Sei Young
    • Elastomers and Composites
    • /
    • v.49 no.4
    • /
    • pp.341-345
    • /
    • 2014
  • In this study, self-actuated photocatalyst that titanium dioxide doped by more than two transition metal was coated PU foam. The antibacterial and antifungal activity of self-actuated photocatalyst coated PU foam was characterized without light. The antibacterial property of self-actuated photocatalyst coated PU foam was shown to be reduced more than 96%, and the antifungal property was shown to be reduced more than 99.9%. The durability of self-actuated photocatalyst coated PU foam tested by Weather-O-meter showed the 7% reduction of formaldehyde decomposition from 96.5% before test to 89.8% after test. The observation of surface of PU foam coated with self-actuated photocatalyst showed that the catalyst was firmly attached to the surface of polyester fiber without separation.

Comparisons of Thermal-moisture Properties in Combination of 3D spacer and Polyurethane(PU) Foam for Mold Brassiere Cups (몰드 브래지어 컵의 제작을 위한 3D 스페이서 패브릭과 폴리우레탄(PU) 폼 조합에 따른 열·수분 전달 특성 비교)

  • Lee, Hyun Young;Park, Huiju
    • Korean Journal of Human Ecology
    • /
    • v.24 no.2
    • /
    • pp.285-295
    • /
    • 2015
  • To identify optimized thermal properties of mold brassiere cup for improved thermal comfort during summer, we compared the thermal resistance and the water vapor permeability of Polyurethane (PU) foam, 3D spacer fabric and the two combined materials of the PU foam and the 3D spacer fabric. Four experimental mold brassieres were made of the materials for wearing test. Six women in their twenties evaluated the wearing sensation in the hot and humid environment. The changes in microclimate temperature and humidity while wearing test brassiere cups were measured. Results indicate that thermal resistance increased as more PU foam were combined, while the water vapor permeability was higher as the content of the 3D spacer fabric increased at thickness of 18mm and over. However, in the wear test, the PU foam brassiere was the most preferred in all ambient conditions due to its soft, flexible and smooth texture, despite its high thermal resistance and low water vapor permeability. This indicates that the textures of mold foams are more dominant properties than thermal properties for mold foams in determining the wear comfort of mold brassieres.

Impact and Rebounding Properties of Shoe Midsole with Temperature (온도변화에 따른 신발 중창용 발포체의 충격 및 반발특성)

  • Park, Cha-Cheol
    • Elastomers and Composites
    • /
    • v.39 no.4
    • /
    • pp.274-280
    • /
    • 2004
  • Sorage modulus(G'), Impact and rebounding properties of polyurethane(PU), phylon(PH) and injection phylon(IP) foams were studied. The storage modulus of PU foam was dramatically increased with decreasing temperature. But the storage modulus(G') of IP and PH foams were not affected by temperature. The Impact force of PU foams was increased with decreasing temperature. But in the cases of IP and PH foams, the impact forces were not changed with temperature below $20^{\circ}C$. Impact farces of IP and PH foams were increased with the temperature above $20^{\circ}C$, but that of PU foam was not changed. Rebounding resilience of PU foam was lower than those of IP and PH foams from $-20^{\circ}C$ to $40^{\circ}C$.

The Effect of Repetitive Compression on the Fatigue Properties of Foam for Footwear Mid-sole (반복압축이 스포츠화용 발포체의 피로특성에 미치는 영향)

  • Park, Cha-Cheol
    • Elastomers and Composites
    • /
    • v.40 no.4
    • /
    • pp.242-248
    • /
    • 2005
  • To study the fatigue properties of three type of foams for footwear midsole, polyurethane(PU), phylon(PH) and injection phylon(IP) foams were prepared with different hardnesses. Three types of foams were repetitively compressed for 50,000 cycles at 50 rpm. Cell shapes of foams were deformed with repetitive compression. The extent of cell deformation of IP was larger than those of PH and PU. Permanent strain of foam was made by repetitively compressing the foam, and the extent of IP was larger than those of PU and PH. Maximum compression forces of three types of the foams were decreased with the repetitive compression, and IP had the largest decrease in compression load of foam with compression. Decreases in maximum compression force of three types of foams were increased with increase of the hardness of foam.

Enhancement of Microbial Immobilization on the Surface of a Reticulated PU-g-PAAc Foam prepared through Graft Copolymerization induced by Atmosoheric Pressure Plasma Treatment (대기압 플라즈마 유도 그라프트 공중합으로 합성된 망상형 PU-g-PAAc 폼의 미생물 고정화능 향상)

  • Myung Sung Woon;Jang Yung Mi;Nam Ki Chun;Choi Ho Suk;Cho Dae Chul
    • KSBB Journal
    • /
    • v.19 no.5
    • /
    • pp.399-405
    • /
    • 2004
  • A reticulated PU-g-PAAc foam was modified through the surface treatment of PU foam by one atmospheric pressure plasma. The synthesized PU-g-PAAc foam was prepared for the purpose of immobilizing microbial organisms. We also attempted different plasma treatment methods including simple plasma treatment, plasma induced grafting and plasma induced grafting followed by plasma re-treatment. The effect of grafting on equilibrium water content (EWC) of PU forms was examined by swelling measurements. Adhesion test was performed to investigate the effect of different plasma treatment methods on the improvement of microbial immobilization. Two foams modified by plasma induced grafting and plasma re-treatment after grafting showed 2.7 and 3.0 fold higher microbial immobilization than unmodified one, respectively. Meanwhile, simple plasma treatment showed a little enhancement. FT-IR analysis of each sample verified the contribution of surface functional groups on the enhancement of microbial immobilization. SEM observation confirmed microbial adherence.

Experimental study of anisotropic behavior of PU foam used in sandwich panels

  • Chuda-Kowalska, Monika;Garstecki, Andrzej
    • Steel and Composite Structures
    • /
    • v.20 no.1
    • /
    • pp.43-56
    • /
    • 2016
  • Polyurethane foam with low density used in sandwich panels is examined in the paper. A series of experiments was carried out to identify mechanical parameters of the foam. Various experimental methods were used for determining the shear modulus, namely a four and three point bending tests (the most common in engineering practice), a double-lap shear test and a torsion test. The behavior of PU in axial compression and tension was also studied. The experiments revealed pronounced anisotropy of the PU foam. An orthotropic model is proposed. Limitations of application of isotropic model of PU in engineering practice is also discussed.

Fabrication and Characterization of Polyurethane Foam for Wound Dressing (창상치료용 폴리우레탄 폼의 제조 및 특성연구)

  • Kim, Won-Il;Kim, Cheol-Joo;Kim, Dae-Yeon;Kwon, Oh-Kyoung;Kwon, Oh-Hyeong
    • Polymer(Korea)
    • /
    • v.34 no.5
    • /
    • pp.442-449
    • /
    • 2010
  • Polyurethane(PU) prepolymer was synthesized from ethylene oxide/propylene oxide(EO/PO) random polyether polyol, toluene diisocyanate and chain extender such as ethylene glycol and 1,4-butanediol. PU foams having various compositions were fabricated from PU prepolymers with different hard segment contents(%) and mixed foaming solution of different compositions. PU foam from chain extender-introduced PU prepolymer and mixed foaming solution containing glycerin showed better mechanical property than other groups. Various PU foams were tested on their mechanical property, moisture vapor transmission rate, absorption speed, absorptivity, morphology and cell culture test. According to the test, the PU foam fabricated from chain extender-introduced PU prepolymer and mixed foaming solution containing optimum composition of F-68, glycerin and CMC was found to have the best property for wound dressing materials. From in vivo animal study, it was confirmed that above PU foam showed rapid wound recovery.

Damping and Transmission Loss of Polyurethane Multi-Layer (폴리우레탄 다층구조의 감치 및 투과손실)

  • Lee Yong Geon;Lim Yi Rang;Kwon Oh Hyeong;Yoon Kwan Han
    • Polymer(Korea)
    • /
    • v.29 no.3
    • /
    • pp.300-303
    • /
    • 2005
  • Polyurethane multi-layer and foam multi-layer were prepared with PU1000 and PU2000 made by poly(propylene glycol) (PPG) having the molecular weight of 1000 and 2000 g/mol, respectively. The damping and transmission loss of these materials were compared with PU1000 used as a reference. The damping peak of polyurethane multi-layer was shifted to the lower temperature compared with PU1000, while the damping peak of polyurethane foam multi-layer was shifted to the higher temperature and broaden. In terms of noise reduction, the transmission loss of polyurethane multi-layer was effective at the specific frequency range such as less than 100 Hz and around 600 Hz compared with PU1000. The transmission loss of polyurethane foam multi-layer was most effective in the whole experimental frequency range.