• Title/Summary/Keyword: PTX

Search Result 87, Processing Time 0.165 seconds

Clinical Significance and Prognostic Value of Pentraxin-3 as Serologic Biomarker for Lung Cancer

  • Zhang, Dai;Ren, Wei-Hong;Gao, Yun;Wang, Nian-Yue;Wu, Wen-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.7
    • /
    • pp.4215-4221
    • /
    • 2013
  • Purposes: Lung cancer is prevalent worldwide and improvements in timely and effective diagnosis are need. Pentraxin-3 as a novel serum marker for lung cancer (LC) has not been validated in large cohort studies. The aim of the study was to assess its clinical value in diagnosis and prognosis. Methods: We analyzed serum PTX-3 levels in a total of 1,605 patients with LC, benign lung diseases and healthy controls, as well as 493 non-lung cancer patients including 12 different types of cancers. Preoperative and postoperative data were further assessed in patients undergoing LC resection. The diagnostic performance of PTX-3 for LC and early-stage LC was assessed using receiver operating characteristics (ROC) by comparing with serum carcinoembryonic antigen (CEA), cytokeratin 19 fragments (CYFRA 21-1). Results: Levels of PTX-3 in serum were significantly higher in patients with LC than all controls. ROC curves showed the optimum diagnostic cutoff was 8.03ng/mL (AUC 0.823, [95%CI 0.789-0.856], sensitivity 72.8%, and specificity 77.3% in the test cohort; 0.802, [95%CI 0.762-0.843], sensitivity 69.7%, and specificity 76.4% in the validate cohort). Similar diagnostic performance of PTX-3 was observed for early-stage LC. PTX-3 decreased following surgical resection of LC and increased with tumor recurrence. Significantly elevated PTX-3 levels were also seen in patients with non-lung cancers. Conclusions: The present data revealed that PTX-3 was significantly increased in both tissue and serum samples in LC patients. PTX-3 is a valuable biomarker for LC and improved identification of patients with LC and early-stage LC from those with non-malignant lung diseases.

Pentoxifylline Induces Lipolysis and Apoptosis of Human Preadipocytes, Keratinocytes and Fibroblasts In Vitro

  • Lee, Il-Kyu;Choi, Yun-Jung;Shim, In-Sop;Kim, Kyung-Soo;Choi, Chang-Jin
    • Biomolecules & Therapeutics
    • /
    • v.18 no.1
    • /
    • pp.56-64
    • /
    • 2010
  • Pentoxifylline (PTX) has been used for the local reduction of fat tissue in the clinical setting. However, its safety and efficacy have not been proven. The aim of this study was to evaluate the effects of PTX on cell lines established from fat tissue. Newly cultured human preadipocytes and adipocytes from subcutaneous abdominal fat in addition to purchased human lung fibroblasts and keratinocytes were treated with PTX at different concentrations. Cell viability was determined using the Cell counting kit (CCK)-8 assay and lipolysis was evaluated using an Elisa kit. DNA fragmentation, Western blot analysis, Hoechst and Propidium Iodide (PI) staining and fluorescence activated cell scanning analysis were performed to confirm apoptosis. The viability of adipocytes, preadipocytes, keratinocytes and fibroblasts was markedly decreased at concentrations of PTX above 20 mM. Apoptosis was induced at concentrations of PTX over 40 mM in all cell lines. Lipolysis was increased by 60% at concentrations of PTX of 20 mM compared to the control. In conclusion, the results of this study showed that 20 mM of PTX induced lipolysis. At concentrations over 20 mM, PTX reduced the viability of all cells studied including: adipocytes, preadipocytes, fibroblasts and keratinocytes, in a non-specific manner.

Pentoxifylline treatment of frozen pig sperm affects sperm motility and fetal numbers

  • Baek, Sun Young;Chung, Hak Jae;Hong, Joon Ki;Cho, Eun Seok;Choi, Inchul
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.3
    • /
    • pp.657-665
    • /
    • 2020
  • The objective of this study was to investigate whether supplementation of pentoxifylline (PTX; phosphodiesterase inhibitor) to thawed boar semen improves the post-thaw motility of sperm and affects the efficiency of artificial insemination (AI) and further development. To determine the concentration of PTX for AI, frozen-thawed semen was incubated with 0, 5, 10, and 20 mM PTX in an extender freezing medium, respectively, after thawing. Kinematic properties of sperm were examined with a computer-assisted semen analysis (CASA) system. In addition, viability and mitochondrial activity were also tested by LIVE/DEAD and a MitoTracker kit. There were no significant differences in the kinetic parameters of thawed sperm between control and treatment groups, but overall assessment parameters such as motility and rapid progressive were higher in the 10 mM PTX group. In the viability and mitochondrial assay, there were no significant differences observed in the PTX treatment, compared to the control. For further analysis, artificial inseminations were performed using frozen semen and 10 mM PTX treated cryopreserved semen, respectively. There were no differences in pregnancy rates and fetus weights among the groups until 30 and 40 days, but litter size was reduced and relatively low-birth weight was observed in the PTX group. In summary, our findings suggest that enhancement of in vitro sperm quality or non-toxicity supplemented by PTX may have detrimental effects on fetus development.

Effect of pertussis toxin pretreated centrally on blood glucose level induced by stress

  • Suh, Hong-Won;Sim, Yun-Beom;Park, Soo-Hyun;Sharma, Naveen;Im, Hyun-Ju;Hong, Jae-Seung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.5
    • /
    • pp.467-476
    • /
    • 2016
  • In the present study, we examined the effect of pertussis toxin (PTX) administered centrally in a variety of stress-induced blood glucose level. Mice were exposed to stress after the pretreatment of PTX (0.05 or 0.1 mg) i.c.v. or i.t. once for 6 days. Blood glucose level was measured at 0, 30, 60 and 120 min after stress stimulation. The blood glucose level was increased in all stress groups. The blood glucose level reached at maximum level after 30 min of stress stimulation and returned to a normal level after 2 h of stress stimulation in restraint stress, physical, and emotional stress groups. The blood glucose level induced by cold-water swimming stress was gradually increased up to 1 h and returned to the normal level. The intracerebroventricular (i.c.v.) or intrathecal (i.t.) pretreatment with PTX, a $G_i$ inhibitor, alone produced a hypoglycemia and almost abolished the elevation of the blood level induced by stress stimulation. The central pretreatment with PTX caused a reduction of plasma insulin level, whereas plasma corticosterone level was further up-regulated in all stress models. Our results suggest that the hyperglycemia produced by physical stress, emotional stress, restraint stress, and the cold-water swimming stress appear to be mediated by activation of centrally located PTX-sensitive G proteins. The reduction of blood glucose level by PTX appears to due to the reduction of plasma insulin level. The reduction of blood glucose level by PTX was accompanied by the reduction of plasma insulin level. Plasma corticosterone level up-regulation by PTX in stress models may be due to a blood glucose homeostatic mechanism.

Apoptotic Cell Death by Pectenotoxin-2 in p53-Deficient Human Hepatocellular Carcinoma Cells (종양억제유전자 p53 결손 인체간암세포에서 Pectenotoxin-2에 의한 Apoptosis 유도)

  • Shin, Dong-Yeok;Kim, Gi-Young;Choi, Byung-Tae;Kang, Ho-Sung;Jung, Jee-H.;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.17 no.10
    • /
    • pp.1447-1451
    • /
    • 2007
  • Through the screening of marine natural compounds that inhibit cancer cell proliferation, we previously reported that pectenotoxin-2 (PTX-2) isolated from marine sponges exhibits selective cytotoxicity against several cell lines in p53-deficient tumor cells compared to those with functional p53. However, the molecular mechanisms of its anti-proliferative action on malignant cell growth are not completely known. To further explore the mechanisms of its anti-cancer activity and to test whether the status of p53 in liver cancer cells correlates with their chemo-sensitivities to PTX-2, we used two well-known hepatocarcinoma cell lines, p53-deficient Hep3B and p53-wild type HepG2. We have demonstrated that PTX-2 markedly inhibits Hep3B cell growth and induces apoptosis whereas HepG2 cells are much more resistant to PTX-2 suggesting that PTX-2 seems to act by p53-independent cytotoxic mechanism. The apoptosis induced by PTX-2 in Hep3B cells was associated with the modulation of DNA fragmentation factor (DFF) family proteins, up-regulation of pro-apoptotic Bcl-2 family members such as Bax and Bcl-xS and activation of caspases (caspase-3, -8 and -9). Blockade of the caspase-3 activity by caspase-3 inhibitor, z-DEVD-fmk, prevented the PTX-2-induced growth inhibition in Hep3B cells. Moreover, treatment with PTX-2 also induced phosphorylation of AKT and extracellular-signal regulating kinase (ERK), but not c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MARK). Specific inhibitors of PI3K inhibitor (LY294002) and ERK1/2 inhibitor (PD98059) significantly blocks PTX-2-induced-anti-proliferative effects, whereas a JNK inhibitor (SP600125) and a p38 MAPK inhibitor (SB203580) have no significant effects demonstrating that the pro-apoptotic effect of PTX-2 mediated through activation of AKT and ERK signal pathway in Hep3B cells.

The Role of Pentraxin 3 in Aspergillosis: Reality and Prospects

  • Kang, Yuening;Yu, Yuetian;Lu, Liangjing
    • Mycobiology
    • /
    • v.48 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • Pentraxin 3 (PTX3) is a soluble pattern recognition receptor (PRR), which is produced by several kinds of cells, such as neutrophils, dendritic cells, macrophages, and epithelial cells. PTX3 is known to play an important protective effect against Aspergillus. Genetic linkage in gene-targeted mice and human PTX3 plays a non-redundant role in the immune protection against specific pathogens, especially Aspergillus. Recent studies have shown that the polymorphism of PTX3 is associated with increased susceptibility to invasive aspergillosis (IA). In this review, we provide an overview of these studies that underline the potential of PTX3 in diagnosis and therapy of IA.

The Preventive Effect of Dexrazoxane and Pentoxifylline on Adriamycin Induced Cardiomyopathy (Dexrazoxane과 Pentoxifylline의 Adriamycin 유발성심근증에 대한 예방 효과)

  • Zhu, Ling;Bae, Eun-Jung;Ha, Il-Soo;Seo, Jung-Wook;Noh, Chung-Il;Choi, Jung-Yun;Yun, Yong-Soo
    • Clinical and Experimental Pediatrics
    • /
    • v.48 no.12
    • /
    • pp.1378-1384
    • /
    • 2005
  • Purpose : We hypothesized dexrazoxane(DXR) and pentoxifylline(PTX) may prevent myocardial damage in adriamycin(ADR)-induced cardiomyopathic rat model. We also investigated their effects on the myocardial apoptosis and fibrosis in ADR induced cardiomyopathy. Methods : The six-week old female Spregue-Dawley rats were divided into control group(CNT, n=4), ADR group(n=6), ADR+DXR group(DXR, n=5), ADR+PTX group(PTX, n=6), ADR+DXR+PTX group(DXPT, n=5). ADR(5 mg/week, twice) was administrated intravenously to rats except CNT group to induce cardiomyopathy. The PTX(50 mg/kg/day) was administered daily from day-0 to Day-21. The DXR(100 mg/kg) was administered 30 minutes before each ADR injection. On day 21, the rats were sacrificed and the degree of histopathologic changes of hypercontraction band necrosis, cytoplasmic vacuolar change and fibrosis were scored. Immunohistochemical staining for Bcl-2 expression and RT-PCR for $TNF-{\alpha}$ and CTGF were performed. Results : Histopathological scores of myocardial damage were significantly higher in ADR rats than CNT rats(P<0.05), and significantly lower in DXPT rats than ADR rats(P<0.01). Myocardial fibrosis was prevented in both PTX rats and DXPT rats. The expression of Bcl-2 was weaker in ADR rats than that in CNT rats(P<0.05), and stronger in both DXR and DXPT rats than that in ADR rats (P<0.05). $TNF-{\alpha}$ concentration of ADR rats was not different from that of treated groups. Conclusion : DXR prevented myocyte apoptosis with increased Bcl-2 expression, and PTX prevented myocardial fibrosis in ADR induced cardiomyopathic rats. The combination therapy of DXR and PTX showed prevention of cardiomyopathy in ADR induced cardiomyopathy rat model.

Evaluation of the Anti-Tumor Effects of Paclitaxel-Encapsulated pH-Sensitive Micelles

  • Han, Jong-Kwon;Kim, Min-Sang;Lee, Doo-Sung;Kim, Yoo-Shin;Park, Rang-Woon;Kim, Kwang-Meyung;Kwon, Ick-Chan
    • Macromolecular Research
    • /
    • v.17 no.2
    • /
    • pp.99-103
    • /
    • 2009
  • We evaluated the efficacy of pH-sensitive micelles, formed by methoxy poly(ethylene glycol)-b-poly($\beta$)-amino ester) (PEG-PAE), as carriers for paclitaxel (PIX), a drug currently used to treat various cancers. PTX was successful encapsulated by a film hydration method. Micelles encapsulated more than 70% of the PTX and the size of the PTX-encapsulated micelles (PTX-PM) was less than 150 nm. In vitro experiments indicated that the micelles were unstable below pH 6.5. After encapsulation of PTX within the micelles, dynamic light scattering (DLS) studies indicated that low pH had a similar demicellization effect. An in vitro release study indicated that PTX was slowly released at pH 7.4 (normal body conditions) but rapidly released under weakly acidic conditions (pH 6.0). We demonstrated the safety of micelles from in vitro cytotoxicity tests on HeLa cells and the in vivo anti-tumor activity of PTX-PM in B16F 10 tumor-bearing mice. We concluded that these pH-sensitive micelles have potential as carriers for anti-cancer drugs.

Intraperitoneal Paclitaxel Combined with S-1 Plus Oxaliplatin for Advanced Gastric Cancer with Peritoneal Metastasis: a Phase I Study

  • Kim, Dong-Wook;Seo, Won Jun;Youn, Sang Il;Jee, Ye Seob;Jang, You-Jin;Kim, Jong-Han
    • Journal of Gastric Cancer
    • /
    • v.21 no.4
    • /
    • pp.418-425
    • /
    • 2021
  • Purpose: We designed a new regimen by combining intraperitoneal (IP) paclitaxel (PTX) with systemic S-1 plus oxaliplatin (SOX) for the treatment of advanced gastric cancer with peritoneal metastasis. This dose-escalation study aimed to determine the maximum tolerated dose (MTD) and recommended dose (RD) of IP PTX administered weekly to patients. Materials and Methods: Eight cycles of IP PTX plus SOX regimen were administered to the patients. S-1 was administered orally twice daily at a dose of 80 mg/m2/day for 14 consecutive days, followed by 7 days of rest. Intravenous oxaliplatin was administered at a fixed dose of 100 mg/m2 on day 1, while IP PTX was administered on days 1 and 8. The initial dose of IP PTX was 40 mg/m2, and the dose escalation was set in units of 20 mg/m2 up to 80 mg/m2. Dose-limiting toxicities (DLTs) were defined as grade 3 non-hematologic toxicities, grade 4 leukopenia, grade 3 febrile neutropenia, and grade 3 thrombocytopenia. Results: Nine patients were included in the study. No DLTs were observed in any of the enrolled patients. Therefore, the MTD was not reached, and the RD of IP PTX was determined to be 80 mg/m2. Four patients (44%) showed a decreased peritoneal cancer index score on second-look laparoscopic examination. Conclusions: The present study determined the dose for further clinical trials of IP PTX to be 80 mg/m2, when combined with a systemic SOX regimen.

Effects of Some Metabolic Inhibitors on Phototactic Movement in Cyanobacterium Synechosystis sp. PCC 6803 PTX (람세균 Synechocystis sp. PCC 6803 PTX의 주광성 운동에 미치는 몇가지 대사 억제제의 효과)

  • 박영총
    • Journal of Plant Biology
    • /
    • v.38 no.1
    • /
    • pp.87-93
    • /
    • 1995
  • For understanding physiological nature of phototaxis in Synechocystis sp. PCC 6803 PTX(S. 6803 PTX), we examined the effects of some metabolic inhibitors and cation ionophore on the phototactic movement. In the presence of DCMU, which blocks the photosynthetic electron transport just after photosystem II acceptor, there was no inhibitory effect on the phototaxis up to $100\;\mu\textrm{M}$. Instead, the respiratory electron chain inhibitor such as sodium azide dramatically impaired the phototaxis in S. 6803 PTX. These observations indicate that the phototaxis is linked not to photo-phosphorylation, but to respiratory phosphorylation. When the cells were treated with un couplers such as CCCP or DNP, which dissipate the electrochemical gradient of proton($\Delta\mu_{H}+$) across the cytoplasmic membrane, these chemicals did not affect phototaxis. In contrast, when cells were treated with DCCD or NBD which deprive cells of A TP but leave $\Delta\mu_{H}+$ intact across the membrane, the phototactic movement was severly reduced. These results imply that ATP production, not proton motive force, is involved in the phototactic movement in this organism as a driving motive force. The application of specific calcium ionophore A23187 strongly impaired positive phototaxis. Calcium fluxes should be engaged in the sensory trans-duction of phototactic orientation. Finally, when ethionine was supplimented to culture media, the photomovement of this organism was inhibited. This implies that methylation/demethylation mechanism controls the process of phototaxis in S. 6803 PTX like chemotaxis in E. coli and Salmonella typhimurium.murium.

  • PDF