• Title/Summary/Keyword: PTV(Particle Tracking Velocimetry)

Search Result 44, Processing Time 0.022 seconds

Development of a PTV Algorithm for Measuring Sediment-Laden Flows (유사 흐름 측정을 위한 입자추적유속계 알고리듬의 개발)

  • Yu, Kwon-Kyu;Muste, Marian;Ettema, Robert;Yoon, Byung-Man
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.10 s.159
    • /
    • pp.841-849
    • /
    • 2005
  • Two-phase flows, e.g. sediment-laden flow and bubbly flow, have two different flow profiles; flow velocity and sediment velocity. To measure velocity distributions of two-phase flows, it is necessary to use sophisticated instruments which can separate velocity profiles of two-phases. For bubbly flows, PIV (Particle Image Velocimetry) or PTV (Particle Tracking Velocimetry) has given fairly good velocity profiles of two-phases. However, for sediment-laden flows, the applications of PIV or PTV has not been so successful, because the sediment particles introduced to the flow kept the images from being analyzed. A new algorithm, which consists of several image analysis methods, is proposed to analyze sediment-laden flows. For detection algorithm, threshold method, edge detection method, and thinning method are adapted, and for finding matching pair PIV and PTV routines are combined. The proposed method can (1) detect sediment particles with irregular boundaries, (2) remove reflected images and scattered images, and (3) discriminate tracer particles from reflected images of sediment particles.

Measurement of Velocity-Lag of Suspended-Sediment Particles in Turbulent Open-Channel Flows (난류 중 부유사의 속도 지체 측정)

  • Yu, Kwon-Kyu;Marian Muste;Robert Ettema;Yoon, Byung-Man
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.2 s.163
    • /
    • pp.99-108
    • /
    • 2006
  • To describe the behavior of suspended-sediment particles in turbulent open-channel flows, the advection-diffusion equation or its simplified form has been used. Though this equation was derived upon several assumptions, only a few studies tried to evaluate the limit of the assumptions. The reason is that it is very difficult to measure turbulence in open-channel flows and to discriminate the velocities of water and sediment particles. The present study aims to measure the velocity profiles of water and sediment particles in open-channel flows by using PTV (Particle Tracking Velocimetry), a kind of PIV (Particle Image Velocimetry). The measured results showed that sediment particles moved slower than water tracers did in the outer region. In the present study, the amount of velocity-lag reached about $5\%$ of the mom flow velocity and the position of the maximum velocity-lag was $g/h\approx0.05\;(g^{+}=30\~50)$ The main cause of the velocity-lag of sediment particles seems that the sediment particles have larger density than water has. On the other hand, in the viscous sublayer, sediment particle has a larger velocity than water tracers. The reason of the inversion of velocity-lag may be due to the no-sleep condition of water at the solid boundaries.

Fall-Velocity Measurement Using Image Analysis Technique (영상해석기법을 이용한 침강속도 측정)

  • Yun, Byeong-Man;Yu, Gwon-Gyu;No, Yeong-Sin
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.4
    • /
    • pp.327-333
    • /
    • 2001
  • Particle tracking velocimetry (PTV) is introduced and applied to the fall-velocity measurement. The fall velocities of sediment particles were measured using PTV in the still water and compared with the values presented in the existing literature. Comparison shows that PTV measures the fall velocities accurately. This result enables the measurement of fall velocity in the turbulent flows, which was not possible with conventional methods.

  • PDF

A Study on the Interaction between Particles and Surrounding Fluid (입자와 주위유체와의 상호작용에 관한 연구)

  • ;T.Kurihara;H. Monji;G. Matsui
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.2
    • /
    • pp.108-115
    • /
    • 2002
  • The fundamental mechanism of a dispersed two-phase flow was investigated. Experiments were carried out to understand how the particles behaves under the influence of the particle size, shape, metamorphoses (bubble) and buoyancy of a single particle which is ascending from the standstill water. Two CCD cameras were employed for image processing of the behavior of the particles and the surrounding flow, which was interpreted with the technique of correlation PIV (Particle Image Velocimetry) and PTV (Particle Tracking Veloci- metry), respectively The experimental results showed that the large density difference bet- ween a particle and water caused high relative velocity and induced zigzag motion of the particle. Furthermore, the turbulence intensity of a bubble was about twice the case of the spherical solid particle of similar diameter.

Measurement of 3D Flow inside Micro-tube Using Digital Holographic PTV Technique (디지털 Holographic PTV기법을 이용한 미세튜브 내부 3차원 유동장 측정)

  • Kim, Seok;Kim, Ju-Hee;Lee, Sang-Joon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.177-178
    • /
    • 2006
  • Digital holographic particle tracking velocimetry (HPTV) is developed by single high-speed camera and single continuous laser with long coherent length. This system can directly capture 4000 hologram fringe images for 1 second through a camera computer memory. The 3D particle location is made of the reconstruction by using a computer hologram algorithm. This system can successfully be applied to instantaneous 3D velocity measurement in the water flow inside a micro-tube. The average of 100 instantaneous velocity vectors is obtained by reconstruction and tracking with the time of evolution of recorded fringes images. In the near future, we will apply this technique to measure 3D flow information inside various micro structures.

  • PDF

4-Dimensional Particle Tracking Velocimetry (4D-PTV)

  • Doh Deog Hee;Hwnag Tae Gyu;Cho Yong Beom;Pyeon Yong Beom;Okamoto Koji
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.43-44
    • /
    • 2003
  • A 4D-PTV system was constructed. The measurement system consists of three high-speed high-definition cameras, Nd-Yag laser and a host computer. The GA-3D-PTV algorithm was used for completing the measurement system. A horizontal impinged jet flow was measured. The Reynolds number is about 40,000. Spatial temporal evolution of the jet flow was examined and physical properties such as spatial distributions of vorticity and turbulent kinetic energy were obtained with the constructed system.

  • PDF

Measurement of Brownian motion of nanoparticles in suspension using a network-based PTV technique

  • Banerjee A.;Choi C. K.;Kihm K. D.;Takagi T.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.91-110
    • /
    • 2004
  • A comprehensive three-dimensional nano-particle tracking technique in micro- and nano-scale spatial resolution using the Total Internal Reflection Fluorescence Microscope (TIRFM) is discussed. Evanescent waves from the total internal reflection of a 488nm argon-ion laser are used to measure the hindered Brownian diffusion within few hundred nanometers of a glass-water interface. 200-nm fluorescence-coated polystyrene spheres are used as tracers to achieve three-dimensional tracking within the near-wall penetration depth. A novel ratiometric imaging technique coupled with a neural network model is used to tag and track the tracer particles. This technique allows for the determination of the relative depth wise locations of the particles. This analysis, to our knowledge is the first such three-dimensional ratiometric nano-particle tracking velocimetry technique to be applied for measuring Brownian diffusion close to the wall.

  • PDF

Simultaneous measurement of velocity and temperature fields in micro-scale flow and its application to electrokinetic flow (마이크로 스케일 유동에서의 속도장 온도장 동시 측정 기법과 동전기 유동에의 적용)

  • Lee, Beom-Joon;Jin, Song-Wan;Kim, Young-Won;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2585-2590
    • /
    • 2007
  • In this paper, a technique of simultaneously measuring the velocity and the temperature in micro-scale flow is proposed. This method uses particle tracking velocimetry (PTV) for measuring the velocity and laser induced fluorescence (LIF) for measuring the temperature. To measure the accurate velocity and temperature, images for PTV and for LIF are separated by using two light sources and a shutter which is synchronized with a camera. By using only one camera, measurement system can be simplified and the error from complicate optical system can be minimized. Error analyses regarding the concentrations of fluorescent dye and particle and the light source fluctuation are also conducted. It is found that the error of the temperature and the velocity highly depends on the concentration of fluorescent particles which are used for PTV. This technique is applied to the simultaneous measurement of the velocity and the temperature in the electrokinetic flow. It is found that the velocity and temperature vary with the electric field strength and the concentration of electrolyte.

  • PDF

Simultaneous Measurement of Velocity and Temperature Fields in Micro-Scale Flow and Its Application to Electrokinetic Flow (마이크로 스케일 유동에서의 속도장 온도장 동시 측정 기법과 동전기 유동에의 적용)

  • Lee, Beom-Joon;Jin, Song-Wan;Kim, Young-Won;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.7 s.262
    • /
    • pp.644-652
    • /
    • 2007
  • In this paper, a technique of simultaneously measuring the velocity and the temperature in micro-scale flow is proposed. This method uses particle tracking velocimetry (PTV) for measuring the velocity and laser induced fluorescence (LIE) for measuring the temperature. To measure the accurate velocity and temperature, images for PTV and for LIE are separated by using two light sources and a shutter which is synchronized with a camera. By using only one camera, measurement system can be simplified and the error from complicate optical system can be minimized. Error analyses regarding the concentrations of fluorescent dye and particle and the light source fluctuation are also conducted. It is found that the error of the temperature and the velocity highly depends on the concentration of fluorescent particles which are used for PTV. This technique is applied to the simultaneous measurement of the velocity and the temperature in the electrokinetic flow. It is found that the velocity and temperature vary with the electric field strength and the concentration of electrolyte.

Effect of Particle Loading Ratio on Fluid Characteristics and Particle Distribution in Particle-laden Coaxial Jet (입자부상 동축 분사기에서 입자로딩비가 유동 특성과 입자분포에 미치는 영향에 대한 연구)

  • Yoon, Jungsoo;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.9-19
    • /
    • 2015
  • Experimental research on characteristics of particle-laden jet by using a coaxial injector was conducted in order to design fuel and oxidizer injectors of the supercavitation underwater vehicle. $1{\mu}m$ and $42{\mu}m$ particles was simultaneously injected to obtain particle and fluid velocity. Small particles($1{\mu}m$) and large particles represent fluid and fuel characteristics respectively. Small particles, which was processed using PIV algorithms, and one for the large particles processed using PTV algorithms. Fluid phase axial velocity increases according to particle loading ratio increases, and particles are located at the outside of the high vorticity region in a mixing layer of a coaxial injector.