• 제목/요약/키워드: PTT-BP model

검색결과 2건 처리시간 0.015초

PTT를 이용한 자전거 운동 중 지속적인 혈압의 예측 (Continuous Blood Pressure Prediction Using PTT During Exercise)

  • 김철승;문기욱;권정훈;엄광문
    • 대한의용생체공학회:의공학회지
    • /
    • 제27권6호
    • /
    • pp.370-375
    • /
    • 2006
  • The purpose of this work is to predict the systolic blood pressure (BP) during exercise from pulse transit time (PTT) for warning of possible danger. PTT was calculated as the time between R-peak of ECG and the peak of differential photoplethysmograph (PPG). For the PTT-BP model, we used regress equations from previous studies and 3 kinds of new models combining linear and nonlinear regress equation. The model parameters were estimated with the data measured under low to middle intensity exercise, and then was tested with the data measured under high intensity exercise. Predicted BP values after high intensity exercise were compared with those measured by cuff-type sphygmomanometer. The results showed that the error between measured and predicted values were acceptable for the monitoring BP. We tested PTT-BP models 1 month after the identification without further calibration. Models could predict the BP and the errors between measured and predicted BP were about 5mmHg. The suggested system is expected to be helpful in recognizing any danger during exercise.

PTT를 이용한 운동 중 혈압 예측을 위한 Local과 Global Fitting의 비교 (Comparison of Local and Global Fitting for Exercise BP Estimation Using PTT)

  • 김철승;문기욱;엄광문
    • 전기학회논문지
    • /
    • 제56권12호
    • /
    • pp.2265-2267
    • /
    • 2007
  • The purpose of this work is to compare the local fitting and global fitting approaches while applying regression model to the PTT-BP data for the prediction of exercise blood pressures. We used linear and nonlinear regression models to represent the PTT-BP relationship during exercise. PTT-BP data were acquired both under resting state and also after cycling exercise with several load conditions. PTT was calculated as the time between R-peak of ECG and the peak of differential photo-plethysmogram. For the identification of the regression models, we used local fitting which used only the resting state data and global fitting which used the whole region of data including exercise BP. The results showed that the global fitting was superior to the local fitting in terms of the coefficient of determination and the RMS (root mean square) error between the experimental and estimated BP. The nonlinear regression model which used global fitting showed slightly better performance than the linear one (no significant difference). We confirmed that the wide-range of data is required for the regression model to appropriately predict the exercise BP.