• Title/Summary/Keyword: PTP-1B 저해활성

Search Result 15, Processing Time 0.034 seconds

CoMFA Analysis on Inhibitory Effect of $3{\beta}$-Hydroxy-12-oleanen-28-oic Acid Analogues on PTP-1B Activity and Prediction of Active Compounds ($3{\beta}$-Hydroxy-12-oleanen-28-oic Acid 유도체들의 PTP-1B 저해활성에 대한 CoMFA 분석과 활성 분자들의 예측)

  • Kim, Sang-Jin;Kim, Se-Gon;Sung, Nack-Do
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.2
    • /
    • pp.109-115
    • /
    • 2008
  • The comparative molecular field analyses(CoMFA) models between the substituents with changing groups($R_1{\sim}R_4$) of $3{\beta}$-hydroxy-12-oleanen-28-oic acid derivatives as substrate molecule and their inhibitory activities($pI_{50}$) against protein tyrosine phosphatase(PTP)-1B were derived and discussed quantitatively. The optimized CoMFA F1 model have best predictability and fitness($r^2_{cv.}=0.654$ and $r^2_{ncv.}=0.995$). The order of contribution ratio (%) with CoMFA fields on the inhibitory activities was a steric field(53.0%), electrostatic field(36.2%) and hydrophobic field(10.8%). From the analytical results of CoMFA contour maps, the inhibitory activities were dependent on the R4 group in substrate molecules. Particularly, the new active compounds(P1 & P2) with the inhibitory activity against melanin synthesis were expected.

CoMSIA Analysis on The Inhibition Activity of PTP-1B with 3${\beta}$-Hydroxy-12-oleanen-28-oic Acid Analogues (3${\beta}$-Hydroxy-12-oleanen-28-oic Acid 유도체들의 PTP-1B저해활성에 대한 CoMSIA분석)

  • Kim, Sang-Jin;Chung, Young-Ho;Kim, Se-Gon;Sung, Nack-Do
    • Applied Biological Chemistry
    • /
    • v.51 no.3
    • /
    • pp.171-176
    • /
    • 2008
  • The comparative molecular similarity indices analysis (CoMSIA) models between 3${\beta}$-Hydroxy-12-oleanen-28-oic acid (1-30) analogues as substrate molecule and their inhibitory activities ($pI_{50}$) against protein tyrosine phosphatase (PTP)-1B were derived and discussed quantitatively. Listing in order, the CoMFA>CoMSIA${\geq}$HQSAR>2D-QSAR model, these QSAR models had the better statistical values. The optimized CoMSIA F1 model at grid 3.0${\AA}$ had the best predictability and fitness ($q^2$=0.754 and $r^2$=0.976) by field fit alignment. The order of contribution ratio (%) of CoMSIA fields concerning the inhibitory activities was a H-bond acceptor (48.9%), steric field (25.8%) and hydrophobic field (25.4%), respectively. Therefore, the inhibitory activities of substrate molecules against PTP-1B were dependent upon H-bond acceptor field (A) of $R_4$-group. From the analytical results of CoMSIA contour maps, oleanolic acid derivatives will have better inhibition activities if $R_1$ group has H-bond acceptor disfavor, $R_3$group has steric disfavor and $R_4$ group has steric, hydrophobic, H-bond favor.

Screening of Natural Products for Anti-diabetic Activity and Analysis of Their Active Compounds (항당뇨 효능이 있는 천연물의 탐색 및 활성물질의 분석)

  • Hwa Sin Lee;Bo Bae Park;Sun Nyoung Yu;Min Ji Kim;Yun Jin Bae;Yi Rooney Lee;Ye Eun Lee;Si Yoon Kim;Yun Ho Shim;Soon Cheol Ahn
    • Journal of Life Science
    • /
    • v.33 no.10
    • /
    • pp.783-790
    • /
    • 2023
  • Modern people have an increased incidence of metabolic diseases due to changed eating habits, and diabetes is considered the most significant metabolic disease. Given that existing diabetes treatments are accompanied by side effects, the aim of this study was to identify traditional natural products that have anti-diabetic activity. The potential anti-diabetic and antioxidant activities of natural products were examined using 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay, α-glucosidase assay, and protein tyrosine phosphatase 1B (PTP1B) inhibition assay. Methanol extracts of Ulmus davidiana var. japonica, Acer tegmentosum branches, Nelumbo nucifera seeds, and Carthamus tinctorius seeds were found to have high anti-diabetic activity and further fractionated with solvents using ethyl acetate and butanol. Consequently, the ethyl acetate fraction of C. tinctorius seeds (MG-11-E) with high α-glucosidase and PTP1B inhibitory activity was selected. MG-11-E was subjected to preparative thin layer chromatography, and fraction #6 showed high α-glucosidase and PTP1B inhibitory activity. Fraction #6 was analyzed and fractionated via high performance liquid chromatography with 50% methanol as the mobile phase, and anti-diabetic activity was observed in the sample that eluted after 4 min as a single peak. The α-glucosidase inhibitory activity exhibited by this sample seemed to be greater than the PTP1B inhibitory activity; thus, it was concluded that a greater anti-diabetic therapeutic effect may be achieved by combining this agent with natural products that inhibit PTP1B activity.

Anti-diabetic mechanism of melania snail (Semisulcospira libertina) protamex hydrolysates (다슬기 protamex 가수분해물(MPH)의 항당뇨 기작 연구)

  • Pyo, Sang-Eun;Choi, Jae-Suk;Kim, Mi-Ryung
    • Food Science and Preservation
    • /
    • v.24 no.7
    • /
    • pp.1007-1016
    • /
    • 2017
  • Melania snail (Semisulcospira libertina) was traditionally used as the healthy food in Korea. It was generally known to improve liver function and heal a diabetes. The aim of this study was to elucidate the anti-diabetic mechanism of melanian snail hydrolysates treated with protamex (MPH) by investigating the inhibitory action on protein tyrosine phosphatase 1B (PTP1B), the improving effect on the insulin resistance in C2C12 myoblast and the protective effect for pancreatic beta-cell (INS-1) under the glucose toxicity. The melania snail hydrolysates treated with protamex (MPH), which showed the highest degree of hydrolysis (43%), and inhibited effectively PTP1B activity ($IC_{50}=15.42{\pm}1.1{\mu}g/mL$), of which inhibitory effect was higher than usolic acid, positive control ($IC_{50}=16.65{\mu}g/mL$). MPH increased the glucose uptake in C2C12 myoblast treated with palmitic acid. In addition, MPH increased insulin mRNA expression level by over 160% with enhanced cell viability in INS-1 cell under the high glucose concentration (30 mM). These results suggest that MHP may improve the diabetic symptom by the inhibiting the PTP1B activity, increasing the glucose uptake in muscle cell and protecting the pancreatic beta-cell from glucose toxicity.

Screening of Medicinal Herbs for Inhibitory Activity against Protein Tyrosine Phosphatase 1B (생약의 Protein Tyrosine Phosphatase 1B 저해활성 검색)

  • Lee, Woo-Jung;Kim, Su-Nam;Yoon, Goo
    • Korean Journal of Pharmacognosy
    • /
    • v.41 no.3
    • /
    • pp.227-231
    • /
    • 2010
  • Protein tyrosine phosphatase 1B (PTP1B) is predicted to be therapeutic target in treatment of type 2 diabetes and obesity. Thus, in order to search for PTP1B inhibitors, we screened the inhibitory activity of PTP1B in the water extracts of 84 medicinal herbs. Among them, the extracts of Pini Folium, Magnoliae Cortex, Artemisiae asiaticae Herba, Schizonepetae Herba, Menthae Herba, Mume Fructus, Cimicifugae Rhizoma, and Amomi Cardamomi Fructus showed relatively significant (58-68%) inhibitory activity against PTP1B. Especially, the methylene chloride fraction of the methanol extract of Menthae Herba (81% inhibition at 30 ${\mu}g$/ml) showed more potent inhibitory activity against PTP1B than others.

Screening of the Inhibitory Activity of Medicinal Plants against Protein Tyrosine Phosphatase 1B (생약의 Protein Tyrosine Phosphatase 1B (PTP1B) 저해활성 검색)

  • Hong, Jung-Hyun;Lee, Myung-Sun;Bae, Eun-Young;Kim, Young-Ho;Oh, Hyun-Cheol;Oh, Won-Keun;Kim, Bo-Yeon;Ahn, Jong-Seog
    • Korean Journal of Pharmacognosy
    • /
    • v.35 no.1 s.136
    • /
    • pp.16-21
    • /
    • 2004
  • Protein tyrosine phosphatase 1B(PTP1B) is thought to be a negative regulator in insulin signal-transduction pathway. Insulin-resistance by the activation of PTP1B is a hallmark of both type 2 diabetes and obesity. Thus, the compounds inhibiting PTP1B can improve insulin resistance and can be effective in treating type 2 diabetes and obesity. The methanol extracts of 160 herbal medicines were screened for the inhibitory activity against PTP1B. Among the tested extracts, methanol extracts of Amsonia elliptica, Areca catechu, Benincasa hispida, Morus alba, Salvia miltiorrhiza, Siegesbeckia orientalis, and Trichosanthes kirilowii showed relatively strong inhibitory activity against PTP1B.

Immunomodulatory Effects of Euglena gracilis Extracts (Euglena gracilis 추출물의 면역조절 및 생리활성 분석)

  • Yu, Sun Nyoung;Park, Bo Bae;Kim, Ji Won;Hwang, You Lim;Kim, Sang Hun;Kim, Sunah;Lee, Taeho;Ahn, Soon Cheol
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.183-191
    • /
    • 2021
  • Euglena gracilis is a microalga of great biotechnological interest that can create high levels of bioactive compounds, such as tocopherol, paramylon, and folic acid. The objective of this study was to investigate the biological activities of extracts from E. gracilis, especially those focused on immunological activity. E. gracilis biomass was extracted with hot water (HWE) and the remaining pellet was continuously extracted with methanol (HWME). First, we examined the effect of two extracts from E. gracilis on the production of nitric oxide (NO) and the expression of pro-inflammation cytokines, including IL-1β, IL-6, and TNF-α in murine macrophage RAW 264.7 cells. HWE treatment dose-dependently increased the production of IL-1β and TNF-α. On the other hand, treatment with HWME significantly decreased the generation of NO and pro-inflammatory cytokines (IL-6 and TNF-α) in lipopolysaccharide (LPS)-stimulated macrophage cells. In addition, other biological activities of the extracts were further analyzed: α-glucosidase inhibition, protein tyrosine phosphatase (PTP1B) inhibition, tyrosinase inhibition, xanthine oxidase (XO) inhibition, and angiotensin-converting enzyme (ACE) inhibition. Analysis of these biological activities showed that HWE has more inhibitory effects than HWME against α-glucosidase, tyrosinase, and XO agents. However, the inhibition of PTP1B and ACE with HWME were higher than with HWE. Taken together, the results suggested that E. gracilis possesses various biological activities―especially immunological capabilities―through regulation of cytokine production. Therefore, E. gracilis extract may be potentially useful for food material with immune-regulating effects.

Screening of Korean Traditional Prescriptions with Inhibitory Activity against Protein Tyrosine Phosphatase 1B and Analysis of Jakgamhwangsinbu-tang (芍甘黃辛附湯) Prescription (전통 처방의 Protein Tyrosine Phosphatase 1B 저해 활성 검색 및 작감황신부탕(芍甘黃辛附湯) 처방 분석)

  • Lee, Woojung;Kim, Hyun Jung;Moon, Hong Seop;Kim, Su-Nam;Yoon, Goo
    • Korean Journal of Pharmacognosy
    • /
    • v.44 no.2
    • /
    • pp.176-181
    • /
    • 2013
  • In order to search for protein tyrosine phosphatase 1B (PTP1B) inhibitors as therapy of type 2 diabetes and obesity from Korean traditional prescriptions, we selected 58 traditional prescriptions based on a review of the Korean traditional medicine books. The hot water extracts of Korean traditional prescriptions were screened for the inhibitory activity against PTP1B. Among the tested extracts, water extracts of Jakgamhwangsinbu-tang, Seonbanghwalmyung-eum, and Takreeonjoong-tang showed relatively good inhibitory activity against PTP1B at the concentration of $30{\mu}g/ml$. Additionally, we evaluated PTP1B inhibitory effect for each herbal ingredient and composition in Jakgamhwangsinbu-tang (芍甘黃辛附湯). Of the tested ingredients from this herbal medicine, water extracts of Paeoniae Radix rubra and Rhei Rhizoma, and ethanol extracts of Paeoniae Radix alba, Rhei Rhizoma, Asiasari Radix, and Aconiti Tuber showed good PTP1B inhibitory effect. Herbal compositions composed of these active herbal ingredients exhibited significant activity for PTP1B inhibition over 70% at $7.5{\mu}g/ml$.

Inhibitory Effects of Phellinus linteus and Rice with Phellinus linteus Mycelium on Obesity and Diabetes (상황버섯, 상황버섯균사체배양쌀 추출물의 비만 및 당뇨 억제 효과)

  • Kim, Haeseop;You, Jeheon;Jo, Yeongcheol;Lee, Youngjae;Park, Inbae;Park, Jeongwook;Jung, Myung-A;Kim, Young-Suk;Kim, Sunoh
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.7
    • /
    • pp.1029-1035
    • /
    • 2013
  • The objective of this study was to examine the ability of extracts from Phellinus linteus (PL) and rice with Phellinus linteus mycelium (PLM) to inhibit obesity and diabetes. The efficacy of PL and PLM were evaluated using Oil Red O staining, cholesteryl ester transfer protein (CETP) levels, protein tyrosine phosphate 1B (PTP1B) levels, organ weight, and serum lipid levels. Lipid accumulation significantly decreased by 76% and 59% upon treatment with $300{\mu}g/mL$ of PL and PLM, respectively (P<0.01). The inhibition of CETP activity increased 99% upon treatment with $300{\mu}g/mL$ of PL or PLM. Treatment with 3, 10, 30, 100, and $300{\mu}g/mL$ of PL, changed PTP1B activity by 10, 11, 14, 12, and 18% respectively. Also, treatment with increasing concentrations of PLM led to a significant concentration-dependent inhibition of PTP1B activity (P<0.01). PL and PLM were orally administered for 28 days after a high fat diet (HFD). PL significantly (P<0.05) reduced triglyceride and cholesterol levels. In addition, PLM significantly (P<0.05) reduced triglyceride, cholesterol, and HDL-cholesterol levels. GOT and GPT were not significantly affected. These results indicate that PL and PLM extracts have potent and useful activities for the treatment of obesity and diabetes mellitus.

Inhibitory Activity of Aralia elata Leaves on Protein Tyrosine Phosphatase 1B and α-Glucosidase (참두릅 잎의 Protein Tyrosine Phosphatase 1B와 α-Glucosidase 저해 활성)

  • Cho, Yoon Sook;Seong, Su Hui;Bhakta, Himanshu Kumar;Jung, Hee Jin;Moon, Kyung Ho;Choi, Jae Sue
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.1
    • /
    • pp.29-37
    • /
    • 2016
  • Anti-diabetic potential of the leaves of A. elata through the inhibitory activity on PTP1B and ${\alpha}$-glucosidase has not been reported. In this study, the EtOAc fraction of methanolic extract from the leaves of A. elata showed potent inhibitory activity against the PTP1B and ${\alpha}$-glucosidase with $IC_{50}$ value of $96.29{\pm}0.3$ and $264.71{\pm}14.87{\mu}g/mL$, respectively. Three known triterpenoids, oleanolic acid, oleanolic acid-28-O-${\beta}$-D-glucopyranoside and oleanolic acid-3-O-${\beta}$-D-glucopyranoside were isolated from the most active EtOAc fraction. We determined the chemical structure of these triterpenoids through comparisons of published nuclear magnetic resonance (NMR) spectroscopic data. Furthermore, we screened these triterpenoids for their ability to inhibit PTP1B and ${\alpha}$-glucosidase over a range of concentrations ($12.5-50{\mu}M$). All three terpenoids significantly inhibited PTP1B in a concentration dependent manner and oleanolic acid effectively inhibited ${\alpha}$-glucosidase. In addition, these compounds revealed potent inhibitory activity with negative binding energies toward PTP1B, showing high affinity and tight binding capacity in the molecular docking studies. Therefore, the results of the present study clearly demonstrate that A. elata leaves and its triterpenoid constituents might be beneficial in the prevention or treatment of diabetic disease.