• Title/Summary/Keyword: PTP inhibitor

Search Result 44, Processing Time 0.019 seconds

Inhibition of protein tyrosine phosphatase non-receptor type 2 by PTP inhibitor XIX: Its role as a multiphosphatase inhibitor

  • Le, Hien Thi Thu;Cho, Young-Chang;Cho, Sayeon
    • BMB Reports
    • /
    • v.50 no.6
    • /
    • pp.329-334
    • /
    • 2017
  • Protein tyrosine phosphatases (PTPs) play crucial roles in signal transduction and their functional alteration has been detected in many diseases. PTP inhibitors have been developed as therapeutic drugs for diseases that are related to the activity of PTPs. In this study, PTP inhibitor XIX, an inhibitor of CD45 and PTEN, was investigated whether it inhibits other PTPs. Protein tyrosine phosphatase non-receptor type 2 (PTPN2) was selectively inhibited by the inhibitor in a competitive manner. Drug affinity responsive target stability (DARTS) analysis showed that the inhibitor induces conformational changes in PTPN2. Phosphorylation levels of signal transducer and activator of transcription 3 (STAT3) at Tyr-705, a crucial site for STAT3 activation and target site of PTPN2, decreased upon exposure to the inhibitor. Our results suggest that PTP inhibitor XIX might be considered as an effective regulator of PTPN2 for treating diseases related to PTPN2.

Effects of PTP1B Inhibitors and Taurine on Blood Lipid Profiles in Adolescents Obesity Model Rats

  • Cheong, Sun-Hee;Hyeongjin Cho;Chang, Kyung-Ja
    • Proceedings of the KSCN Conference
    • /
    • 2004.05a
    • /
    • pp.437.1-437
    • /
    • 2004
  • The protein, called PTP1B (protein tyrosine phosphatase 1B), joins a list of enzymes that mice are associated with obesity. The purpose of this study was to investigate the effects of PTP1B inhibitors and taurine on blood lipid profiles in adolescents obesity model rats. Three week-old thirty-six male Sprague-Dawley rats were randomly assigned to six groups (high fat diet group; HFD group, high fat diet + taurine group; HF+TR group, high fat diet+PTP1B inhibitor A group; HF+A group, high fat diet+PTP1B inhibitor B; HF+B group, high fat diet+PTP1B inhibitor A+taurine group; HF+A+TR group, high fat diet + PTP1B inhibitor B+taurine group; HF+B+TR group).(omitted)

  • PDF

Inhibition of IκB Kinase β (IKKβ) and Anti-diabetic Effect of SA51

  • Bhattarai, Bharat Raj;Kafle, Bhooshan;Hwang, Ji-Sun;Han, Inn-Oc;Cho, Hyeongjin
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2487-2490
    • /
    • 2013
  • SA51, a medium potency inhibitor of protein tyrosine phosphatase 1B (PTP1B), was identified to be a potent inhibitor of $I{\kappa}B$ kinase ${\beta}$ ($IKK{\beta}$). Consistent with this, SA51 prevented lipopolysaccharide (LPS)-induced breakdown of $I{\kappa}B{\alpha}$ in macrophages. The effects of SA51 in mice were compared with those of structurally related compounds, SA18 and SA32, which were previously reported as inhibitors of both enzymes - less potent against $IKK{\beta}$ but more potent against PTP1B compared to SA51. SA51 improved glucose tolerance and lipid parameters in mice, consistent with the results reported for $IKK{\beta}^{+/-}$ mice. In contrast, SA18 and SA32 showed anti-obesity effects without anti-diabetic effects. Collectively, the effects of SA51 could be due largely to the inhibition of $IKK{\beta}$, whereas SA18 and SA32 may be more likely to inhibit PTP1B, consistent with their relative in vitro inhibitory effects.