• Title/Summary/Keyword: PTFE nanofiber

Search Result 3, Processing Time 0.015 seconds

Characteristics of Large-area PTFE Filter Coated with PTFE Nanofiber Fabricated by Roll-to-roll Equipment (Roll-to-roll 공정으로 제조한 나노섬유가 코팅된 대면적 PTFE 필터 특성)

  • Ahn, Seunghwan;Lee, Woo Jin;Kim, Yeonsang;Shim, Euijin;Eom, Hyeonjin
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.613-617
    • /
    • 2022
  • The equipment for fabricating the large-area PTFE nanofiber coated-PTFE foam filter for use as filtration parts of the baghouse that removes particulate matter (PM) in industrial sites was designed and manufactured in this study. The PTFE nanofiber was coated on a commercial PTFE foam filter to increase its PM collection efficiency. The equipment and fabrication processes using a roll-to-roll system were proposed to continuously coat PTFE nanofibers on the surface of the PTFE foam filter. The electrospinning and annealing parts were designed and made by optimizing the equipment for the roll-to-roll system. The surface morphology, composition, and filtration characteristics of the large-area filter fabricated by this equipment were confirmed. PTFE nanofibers were uniformly coated on the large-area filter, and the PTFE nanofiber coated-PTFE foam filter showed PM2.5 collection efficiency of 91.79% and an appropriate pressure drop of 62 Pa with a face velocity of 1 m/min at 280 ℃.

Comparison of Mechanical Properties of Electrospun Nanofiber Web Layered Systems and Conventional Breathable Waterproof Fabrics (전기방사한 나노섬유 웹 처리소재와 상용 투습방수소재의 역학적 특성 비교)

  • Youn, Bo-Ram;Lee, Seung-Sin
    • Science of Emotion and Sensibility
    • /
    • v.13 no.2
    • /
    • pp.391-402
    • /
    • 2010
  • In this study, breathable waterproof materials were prepared by electrospinning. Five kinds of electrospun nanofiber web layered systems with different levels of nanofiber web density, as well as different substrates and layer structures were fabricated, and their mechanical properties (tensile, bending, shear, compression, surface, and thickness & weight) were measured by the KES-FB system and compared with those of conventional breathable waterproof fabrics (densely woven fabric, PTFE laminated fabric and PU coated fabric). The KES-FB measurements demonstrate that the lab-scale nanofiber web layered systems are more flexible and fuller than commercial nanofiber web layered systems, which have a more compact structure than the lab-scale nanofiber web layered systems. Densely woven fabrics and lab-scale nanofiber web layered systems showed lower values of tensile linearity (LT), bending stiffness (B), and shear stiffness (G) than those of PU coated and PTFE laminated fabric. These results indicate that they are more flexible and have less resistance to the shearing movement, corresponding to a more pliable material having a better drape, than PU coated fabrics and PTFE laminated fabrics.

  • PDF

Emulsion Electrospinning of Hydrophobic PTFE-PEO Composite Nanofibrous Membranes for Simple Oil/Water Separation

  • Son, Seo Ju;Hong, Seong Kyung;Lim, Geunbae
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.89-92
    • /
    • 2020
  • Polytetrafluoroethylene (PTFE) fibers are widely used in the textile industry, filter media, membrane distillation, electronic appliances, and construction. In this study, PTFE-polyethylene oxide (PEO) fibrous membranes were fabricated by emulsion electrospinning; subsequently, pure PTFE nanofibers were obtained via sintering. PTFE-PEO electrospinning solutions were prepared using different weight ratios to determine the optimized condition. As the ratio of the PEO increased, the fiber structure improved. Scanning electron microscopy and Fourier-transform infrared spectroscopy observations indicate that PEO is removed and PTFE fused gradually to form bonds among them during sintering. The obtained pristine PTFE membrane demonstrated hydrophobicity at 143.6° water contact angle and oleophilicity at 0° oil contact angle, which is known to be utilized for oil/water separation. A simple separation experiment was performed to remove oil droplets from water. The PTFE membrane exhibited good chemical stability and a high surface-area-to-volume nanofiber ratio. These excellent properties suggest that it is applicable to oil/water separation in harsh chemical environments.