• Title/Summary/Keyword: PTFE film

Search Result 55, Processing Time 0.028 seconds

Effect of Fabric Sound of Vapor Permeable Water Repellent Fabrics for Sportswear on Psychoacoustic Properties (스포츠웨어용 투습발수직물 소리가 심리음향학적 특성에 미치는 영향)

  • Lee, Jee-Hyun;Lee, Kyu-Lin;Jin, Eun-Jung;Yang, Yoon-Jung;Cho, Gil-Soo
    • Science of Emotion and Sensibility
    • /
    • v.15 no.2
    • /
    • pp.201-208
    • /
    • 2012
  • The objectives of this study were to investigate the psychoacoustic properties of PTFE(Poly tetra Fluoroethylene) laminated vapor permeable water repellent fabrics which are frequently used for sportswear, to examine the relationship among fabrics' basic characteristics, mechanical properties and the psychoacoustic properties, and finally to propose the predicting model to minimize the psychoacoustic fabric sound. A total of 8 specimens' frictional sound were recorded and Zwicker's psychoacoustic parameters such as loudness(Z), sharpness(Z), roughness(Z), and fluctuation strength(Z) were calculated using the Sound Quality Program. Mechanical properties of specimens were measured by KES-FB system. Loudness(Z) of specimen D-1 was the highest, which means the rustling sound of the specimen D-1 was the most noisy. Statistically significant difference among film type was observed only in loudness(Z) for fabric sound. Based on ANOVA and post-hoc test, specimens were classified into less loud PTFE film group (groupI) and loud PTFE film group (groupII). Loudness(Z) was higher when staple yarn was used compared when filament yarn was used. According to the correlation between the mechanical properties of fabrics and loudness(Z) in groupI, the shear properties, compression properties and weight showed positive correlation with loudness(Z). According to the regression equation predicting loudness(Z) of groupI, the layer variable was chosen. In groupII, variables explaining the loudness(Z) were yarn types and shear hysteresis(2HG5).

  • PDF

Deposition of Polytetrafluoroethylene Thin Films by IR-pulsed Laser Ablation (Nd:YAG 레이저에 의한 폴리테트라플루오르에틸렌 박막 증착)

  • Park Hoon;Seo Yu-Suk;Hong Jin-Soo;Chae Hee-Baik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.1
    • /
    • pp.58-63
    • /
    • 2005
  • PTFE (polytetrafluoroethylene) thin films were prepared from the pellets of the graphite doped PTFE via pulsed laser ablation with 1064 nm Nd:YAG laser. The graphite powder converts the absorbed photon energy into thermal energy which is transmitted to nearby PTFE. The PTFE is decomposed by thermal process. The deposited films were transparent and crystalline. SEM (scanning electron microscopy) and AFM (atomic force microscopy) analyses indicated that the film surface morphology changed to fibrous structure with increasing thickness. The fluorine to carbon ratios of the film were 1.7 and molecular axis was parallel with (100) Si-wafer substrate. These results obtained by XPS (X-ray photoelectron spectroscopy), FTIR (fourier transform infrared spectroscopy) and XRD (X-ray diffraction).

  • PDF

Formation of Fine Pitch Solder Bumps on Polytetrafluoroethylene Printed Circuit Board using Dry Film Photoresist (Dry Film Photoresist를 이용한 테프론 PCB 위 미세 피치 솔더 범프 형성)

  • Lee Jeong Seop;Ju Geon Mo;Jeon Deok Yeong
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.11a
    • /
    • pp.169-173
    • /
    • 2003
  • We demonstrated the applicability of dry film photoresist (DFR) in photolithography process for fine pitch solder bumping on the polytetrafluoroethylene (PTFE/Teflon) printed circuit board (PCB). The copper lines were formed with $100\;{\mu}m$ width and $18\;{\mu}m$ thickness on the PTFE test board, and varying the gaps between two copper lines in a range of $100-200\;{\mu}m$. The DFRs of $15\;{\mu}m$ thickness were laminated by hot roll laminator, by varying laminating temperature from $100^{\circ}C\;to\;150^{\circ}C$ and laminating speed. We found the optimum process of DFR lamination on PTFE PCB and accomplished the formation of indium solder bumps. The optimum lamination condition was temperature of $150^{\circ}C$ and speed of about 0.63 cm/s. And the smallest size of indium solder bump was diameter of $50\;{\mu}m$ with pitch of $100\;{\mu}m$.

  • PDF

Perfluorinated Sulfonic Acid Ionomer-PTFE Pore-filling Membranes for Polymer Electrolyte Membrane Fuel Cells (고분자전해질연료전지용 과불소계 술폰화 이오노머-PTFE 강화막)

  • Kang, Seong Eun;Lee, Chang Hyun
    • Membrane Journal
    • /
    • v.25 no.2
    • /
    • pp.171-179
    • /
    • 2015
  • Perfluorinated sulfonic acid ionomers (PFSAs) have been widely as solid electrolyte materials for polymer electrolyte membrane fuel cells, since they exhibit excellent chemical durability under their harsh application conditions as well as good proton conductivity. Even PFSA materials, however, suffer from physical failures associated with repeated membrane swelling and deswelling, resulting in fairly reduced electrochemical lifetime. In this study, pore-filling membranes are prepared by impregnating a Nafion ionomer into the pore of a porous PTFE support film and their fundamental characteristics are evaluated. The developed pore-filling membranes exhibit extremely high proton conductivity of about $0.5S\;cm^{-1}@90^{\circ}C$ in liquid water.

Thermally stimulated currents of Corona-charged PTFE film (코로나 대전된 PTFE 필름의 열자격 전류)

  • 박건호;김귀열;홍진웅;연규호;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1988.10a
    • /
    • pp.67-70
    • /
    • 1988
  • In this paper, thermally stimulated currents (TSC) of corona-charged PTFE film were studied. Corona electrets which were formed by applying high voltages ${\pm}$5∼${\pm}$8[kV], to PTFE film of 100[$\mu\textrm{m}$] thickness, were experimented to measure TSC in the temperature range from -100[$^{\circ}C$] to 200[$^{\circ}C$]. As the result, four peaks of ${\gamma}$, ${\beta}$$_2$, ${\beta}$$_1$ and ${\alpha}$ were obtained at the temperature of -40[$^{\circ}C$], 30[$^{\circ}C$], 90[$^{\circ}C$] and 170[$^{\circ}C$], respectively. Speaking of the origins of these peaks, first of all, ${\gamma}$ peak is believed to show up by virtue of CF$_2$groups. B$_2$ peak seems to turn up by detrapping of the electrons which are accelerated by the corona exposure. ${\beta}$$_1$ peak looks to be ascribed to detrapping of the dipole and the trapped electron. Finally, ${\alpha}$ peak appears to result from detrapping of the electrons which are trapped in the para-crystalline region.

  • PDF

Adhesion improvement between metals and fluoropolymers by ion assisted reaction (이온보조반응에 의한 금속과 불소계 고분자의 접착력 증진)

  • Han, Sung;Cho, Jun-Sik;Choi, Sung-Chang;Yoon, Ki-Hyun;Koh, Seok-Keun
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.37-43
    • /
    • 2001
  • Polyvinylidenefluoride and Polytetrafluoroethylene have been irradiated by 1 keV Ar+ ion beam in an $O_2$ environment. Hydrophilic functional groups (such as -(C-O)-,-(C=O)-,-(C=O)-O- and so on) were formed on fluoropolymers. Contact angles of water to PVDF were reduced from $75^{\circ}$ to $31^{\circ}$. Re-increase of contact angle was originated from carbonization phase in case of high dose irradiation above $1{\times}10^{16} Ar^+cm^2$. Contact angles to PTFE decreased at low dose irradiation and were exaggerated to about $140^{\circ}$ due to cone type surface at high dose irradiation. Hydrophilic functional groups have played an important role on adhesion between metal and fluoropolymers by acid-base interaction and chemical bond formation. Adhesion of Pt/PVDF was enhanced by acid-base interaction because Pt is inert metal. Chemical bond formation between Cu and PTFE could enlarge the adhesion strength of Cu/PTFE.

  • PDF

A Study on the Effects of Additives on the Friction and Wear Properties of PTFE Composite (첨가제에 의한 PTFE 복합재료의 마찰마모 특성에 관한 연구)

  • 김용직;김윤해
    • Composites Research
    • /
    • v.13 no.4
    • /
    • pp.11-18
    • /
    • 2000
  • This study is mainly concerned with friction and wear properties for the piston ring of non-lubricating air compressor which made of PTFE-polyimide composites. At the PTFE and polyimide alone mixture specimens, PTFE80%-polyimide20%, which shows the lowest mean friction coefficient and specific wear rate at 0.94m/s sliding speed. In case of the specific wear rate, copper30% specimen shows the lowest value of 2.537-5(mm3/Nm) in all specimens. It considered that the friction coefficient is affected by generating speed and quantity of wear film. In case specific wear rate, it is attributed to the fact that the surface hardness of wear film is proportioned to specific wear rate.

  • PDF

The Simulation of Corona Charging Process in Polytetrafluoroethylene Electret using Finite Element Method (유한요소법을 이용한 PTFE 일렉트렛트의 코로나 대전 과정 시뮬레이션)

  • 이수길;유재웅;박건호;김충혁;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.05a
    • /
    • pp.94-98
    • /
    • 1994
  • In this study, the thermally stimulated current(TSC) of corona charged PTFE film was studied and the simulation of corona charging process was also calculated by finite element method. The electrets which were formed by appling high voltages(DC-5∼-8[kV]) to PTFE film were experimented to measure TSC in the temperature range of -100∼+200 [$^{\circ}C$] and then the finite element method was accomplished to examine corona charging process using a obtained physical constants. It is confirmed that the charging negative corona is profitable as the applications are manufactured because the time constant of negative corona is much larger than it of positive corona. And it is attempted to estimate the corona charging process in space using simulation.

  • PDF

RF magnetron sputtering 방법을 이용하여 제작된 PTFE 박막의 발수성 분석

  • Yun, Hyeon-O;Seo, Seong-Bo;Kim, Ji-Hwan;Kim, Mi-Seon;Ryu, Seong-Won;Park, Seung-Hwan;Kim, Hwa-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.123-123
    • /
    • 2009
  • In our experiment, a PTFE was sputter-coated on substrates to induce water-repellent properties and the RF-magnetron sputtering method for fabrication of PTFE film is used due to the advantages of the simple process, time saving, environmentally friendly, insulating property, and a good adhesion property to substrates. As a result of the correlation between surface roughness of PTFE films and contact angle with water, we found that the roughness surfaces are proportioned to contact angles related to low interfacial energy.

  • PDF

Basic and Mechanical Properties by Film Type to Minimize the Sound Pressure Level of PTFE Laminated Vapor-permeable Water-repellent Fabrics (PTFE(Polytetrafluoroethylene) 라미네이팅 투습발수직물의 총음압 최소화를 위한 필름 타입 별 기본 특성과 역학 특성)

  • Lee, Kyu-Lin;Lee, Jee-Hyun;Jin, Eun-Jung;Yang, Youn-Jung;Cho, Gil-Soo
    • Fashion & Textile Research Journal
    • /
    • v.14 no.4
    • /
    • pp.641-647
    • /
    • 2012
  • This study investigates the sound properties of fabric frictional sound (SPL, ${\Delta}L$, ${\Delta}f$) according to the film type of PTFE laminated vapor-permeable water-repellent fabrics in order to understand the relationship between SPL and the basic properties of fabrics such as layer, yarn type, and thickness of fiber. This study accesses their mechanical properties and determines how to control them to minimize SPL. Eight PTFE laminated water-repellent fabrics, composed of four different film types (A, B, C, D) and with two different fabrics, were used as test specimens. Frictional sounds generated at 1.21m/s were recorded by using a fabric sound generator and SPLs were analyzed through Fast Fourier Transformation (FFT). The mechanical properties of fabrics were measured by KES-FB. The SPL value was lowest at 74.4dB in film type A and highest as 85.5dB in type D. Based on ANOVA and post-hoc test, specimens were classified into less Loud Group (A, B) and Loud Group (C, D). It was shown that SPL was lower when 2 layer (instead of 3 layer), filament yarn than staple, and thin fiber than thick were used. In Group I, shearing properties (G, 2HG5), geometrical roughness (SMD), compressional properties (LC, RC) and weight (W) showed high correlation with SPL however, elongation (EM) and shear stiffness (G) did with SPL in Group II.