• Title/Summary/Keyword: PTCR effect

Search Result 69, Processing Time 0.022 seconds

Effect of Heat Treatments on the PTCR of $BaTiO_3$ Ceramics Doped by $Nb^{+5}$ ($Nb^{+5}$ Doped $BaTiO_3$ 계에서 열처리가 PTCR 현상에 미치는 영향)

  • 문영우;정형진;윤상옥
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.5
    • /
    • pp.54-60
    • /
    • 1985
  • This study is concerned with the mechanism of PTCR in $BaTiO_3$ ceramics doped by $Nb^{+5}$ Since the vacancy compensation layer at the grain boundary of n-type doped $BaTiO_3$ ceramics has been known as a major factor for surface state to give PTCR phenomena the dependence of PTCR on such vacancy compensation layer was attemped to be confirmed experimentally in this study. For the experiment quenching and annealing at various temperature after sintering were adopted to induce difference in the thickness of vacancycompensation layer so as to exihibit difference of PTCReffect eachother. The TEX>$Ba^{++}$ cocentration at the grain and grain boundary was measured by EDAX to confirm the formation of the vacancy compensation layer. It was found that i)either decrease in the temperature for quenching ii) or increase in the temperature for annealing improves the PTCR effect clearly iii)increase in TEX>$Ba^{++}$ concentration at the grain boundary results in the improvement of PTCR effect. It was concluded that all the experimental results gave the evidence for the dependence of PTCR effect on the vacancy compensation layer at the grain boundary which had been induced possibly by the $Ba^{++}$ diffusion by the heat treatment conducted.

  • PDF

Effect of $Sb_2O_3$ Addition on the Microstructure and the PTCR Characteristic in $BaTiO_3$ Ceramics ($BaTiO_3$ 세라믹스에 있어서 미세구조와 PTCR특성에 미치는 $Sb_2O_3$의 첨가효과)

  • 김준수;이병하;이경희
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.2
    • /
    • pp.185-193
    • /
    • 1994
  • Effect of Sb2O3 addition on microstructure and the PTCR characteristic was investigated. The range of the Sb2O3 content and the sintering temperature showing semiconducting and PTCR characteristic, were 0.05~0.125 mol%, and over 130$0^{\circ}C$, respectively. We found that PTCR characteristic, that is, room-temperature resistivity and specific resistivity ration were dependent on the microstructure.

  • PDF

PTCR Effects In Nb2O5 Doped BaTiO3 Ceramics Prepared By Molten Salt Synthesis Method (용융염합성법에 의한 Nb2O5 첨가 BaTiO3의 PTCR 효과)

  • 윤기현;정해원;윤상옥
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.6
    • /
    • pp.579-585
    • /
    • 1987
  • The effects of flux KCl and dopant Nb2O5 on the PTCR characteristics of BaTiO3 prepared by molten salt synthesis method have been investigated. As the amount of dopant Nb2O5 is over the solubility limit in BaTiO3, the room-temperature resistivity increases, and the PTCR effect and the grain size decrease. The variation of the amount of flux KCl slightly influences on the room-temperature resistivity, PTCR effect and grain size in Nb2O5 doped BaTiO3, but BaTiO3 ceramics prepared by the method of molten salt synthesis show larger PTCR effect than those of conventional calcining of mixed oxides.

  • PDF

Electrical Characteristics of (BaSr)TiO3-based PTCR Devices under the Electric Field

  • Lee, Joon-Hyung;Cho, Sang-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.1
    • /
    • pp.16-20
    • /
    • 2002
  • Semiconducting (Ba.Sr)TiO$_3$ceramic device, which shows the PTCR effect, has been usually used as a current limiter. In this case, the device should endure the condition under the high electric field. In this study, the dynamic electrical properties of the PTCR device under high voltage has been evaluated. Two different formulated powders were used and the sintered bodies exhibited the different grain size and porosity. The wide range of characterization such as complex impedance spectroscopy, microstructure, I-V characteristics and voltage dependence of resistivity of the samples were performed. The PTCR effect of the specimen containing coarse grains was very sensitively dependent on the AC electric field, showing that it was inversely pro-portional to the grain boundary potential barrier. The withstanding voltage was proportional to the potential barrier of grain boundary.

The PTCR Effect of Semiconducting Zn-Ti-Ni-O Ceramics (Zn-Ti-Ni-O 반도성 세라믹스의 PTCR 현상)

  • Ko, Il-Young;Choi, Seung-Chul;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.8
    • /
    • pp.609-614
    • /
    • 1993
  • Semiconducting Zn-Ti-Ni-O and Zn-Ti-O system were investigated. The specimens sintered at the temperature between 125$0^{\circ}C$ and 145$0^{\circ}C$ exhibited PTCR effect between -5$0^{\circ}C$ and 35$0^{\circ}C$ with resistivity ration exceeding three decades. Semiconducting Zn-Ti-Ni-O is consisted of two phases, one is n-type ZnO and the other is p-type spinel structure. The mechanism of PTCR effect was explained in relation to the piezoelectric property of ZnO and the residual stress caused by thermal expansion difference between two phases during cooling process.

  • PDF

Electrical Properties of $(Ba,Sr)_{1-x}Y_xTiO_3$ with Variation of Yttrium Content (이트륨 혼입량 변화에 따른 $(Ba,Sr)_{1-x}Y_xTiO_3$의 전기적 특성)

  • Noh, Taeyong;Sung, Hyun Je;Kim, Seungwon;Lee, Chul
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.10
    • /
    • pp.806-811
    • /
    • 1995
  • The electrical properties for $(Ba,Sr)_{1-x}Y_xTiO_3$(x=0.001∼0.009, BSYT) with a positive temperature coefficient of resistivity(PTCR) effect were investigated. The BSYT powder was prepared by oxalate coprecipitation method. It was found that the large PTCR effect was appeared up to 0.3 mol% and decreased above 0.5 mol% of the yttrium concentration. The plot of temperature vs. $1{\varepsilon}$m(T) above Curie temperature($T_c$) was agreed with Curie-Weiss law. The potential barrier calculated from measured resistivity and dielectric constant of specimens was high up to 0.3 mol% and reduced above 0.5 mol% of yttrium concentration as the curve of PTCR effect.

  • PDF

PTCR Characteristics of Multifunctional Polymeric Nano Composites (PTCR 나노 복합기능 소재의 전류 차단 특성 연구)

  • 김재철;박기헌;서수정;이영관;이성재
    • Polymer(Korea)
    • /
    • v.26 no.3
    • /
    • pp.367-374
    • /
    • 2002
  • Electrical characteristics of crystalline polymer composites filled with nano-sized carbon black particle were studied. The developed composite system exhibited a typical positive temperature coefficient resistance (PTCR) characteristic, where the electrical resistance sharply increased at a specific temperature. The PTCR effect was sometimes followed by a negative temperature coefficient resistance (NTCR) feature with temperature, which seemingly caused by the coagulation of nano-sized carbon black particles in the excessive quantity. The PTCR temperature was controlled by the carbon black content and the external voltage. The change of electric conductivity was shown as a function of carbon black content, and the resistance was constant when the carbon black content was over 20 wt%. The room-temperature resistance was maintained by a repeated heating and cooling. The excellent PTCR characteristic was demonstrated by the low resistance in the initial stage and the instantaneous heating capability.

Effect of $MnO_2$ Addition on the MIcrostructure and PTCR Characteristics in Semiconducting $BaTiO_3$ Ceramics (반도성 $BaTiO_3$ 세라믹스의 미세구조 및 PTCR 특성에 미치는 $MnO_2$ 첨가 효과)

  • 김준수;김홍수;백남석;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.5
    • /
    • pp.567-574
    • /
    • 1995
  • The effect of MnO2 addition to 0.1mol% Sb2O3-doped BaTiO3 ceramics on microstructure and PTCR characteristics was studied. The PTCR characteristics was observed when 0.01 and 0.02 wt% MnO2 were added and sintered at 132$0^{\circ}C$ for 1 hour. The characteristics can be explained by the changes in the number and size of the abnormal grain growth due to the liquid phase during sintering. when the amount of MnO2 addition was 0.03 wt%, the sample showed NTCR characteristics with room-temperature resistivity over 109 Ωm regardless of the sintering temperature. This behavior can be described by the microstructure change due to the abnormal grain growth and charge compensation effect by MnO2 added. The room-temperature resistivity was increased as the amount of MnO2 was increased. And the specific resistivity ratio (pmax/pmin) showed maximum at 0.02wt% MnO2.

  • PDF

Fabrication of $BaTiO_3-PTCR$ Ceramic Resister Prepared by Direct Wet Process (습식 직접합성법을 이용한 PTCR 소자개발 연구)

  • 이경희;이병하;이희승
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.4
    • /
    • pp.61-65
    • /
    • 1985
  • $BaTiO_3$ powders doped with $BaTiO_3$ and $Nb_2O_5$ at 9$0^{\circ}C$ for 1hr. were synthesized by Direct Wet Process. These powders were very homogeneous and fine particle size. To obtain the highe PTCR effect AST($1/3Al_2O_3$.$3/4SiO_2$.$1/4TiO_2$) and $MnO_2$ were added in the semiconduc-ting $BaTiO_3$. In this case $Bi_2O_3$ and $MnO_2$ were used in the form of $Bi(NO)_3$ and $MnCl_2$.$4H_2O$ solution for Direct Wet Process. $BaTiO_3$ doped Nb2O5 and $MnO_2$ demostrated greater PTCR effect than $BaTiO_3$ doped $Nn_2O_5$ only.

  • PDF

Effect of Additives on the PTCR Characteristics of La3+ Doped(Ba1-xCax)TiO4 Ceramics (La3+ doped (Ba1-x Cax) TiO3의 PTCR 특성에 미치는 첨가제의 영향)

  • 강원호;오봉인;김재현;이경희
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.1
    • /
    • pp.42-48
    • /
    • 1988
  • Commercially available PTCR (Postive Temperature Coefficient of Resistivity) ceramics which have low room temperature resistance, high PTC effect and temperature coefficient were prepared by La3+ doped semiconducting barium calcium titanate soild solutions. PTCR characteristics were remarkably improved by addition of AST (1/3 Al2O3$.$3/4SiO2$.$1/4TiO2) and MnCl2. That can be explained by formation of liquid phase during sintering and acceptor level on the intergranular layer. Resistivity anormaly increased with decreasing cooling rate. Optimum manufacturing conditions were cooling rate below 100$.$C/hr, Ca and Mn content of 4 mol% &, 0.09-0.12mol% respectively.

  • PDF