• Title/Summary/Keyword: PTC Ceramic Heater

Search Result 13, Processing Time 0.023 seconds

Development of a PTC Heater for Supplementary Heating in a Diesel Vehicle (디젤 차량의 보조 난방을 위한 PTC 히터 개발)

  • Shin, Yoon Hyuk;Kim, Sung Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.666-671
    • /
    • 2014
  • Using positive temperature coefficient (PTC) heater as supplementary heating for diesel engine vehicles with low heat source is a good method to enhance the heating performance during cold start. In this study, the PTC elements were made by using screen printing process for forming ohmic contact layer, and prototype of PTC heater was designed and made for a diesel engine vehicle. In process of designing the PTC heater, the thermal flow analysis of PTC element modules was conducted for verifying the effect of the shapes of contact surface between each of the components (cooling fin, insulator, ceramic element). We also investigated the performance characteristic (heating capacity, energy efficiency, pressure drop) of the PTC heater through the experiments. Therefore, the experimental results indicated that prototype of PTC heater had satisfactory performance. This study will be basis for improving the manufacturing process and increasing the performance of the PTC element and heater.

Reliability Evaluation on PTC Heater Using Accelerated Life Test and Failure Analysis (고장 분석과 가속 수명시험을 통한 PTC 히터의 신뢰성 평가)

  • Choi, Hyoung-Seuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.12
    • /
    • pp.843-846
    • /
    • 2015
  • In this paper, the failure mechanism of PTC heater were examined closely by failure analysis and based on it, accelerated life test were conducted. Finally, life distribution and acceleration model were established. The failure mechanism of PTC heater such as crack, increase of resistance due to heating were identified. Two acceleration factors such as temperature, humidity were chosen with two levels each and accelerated life test were done. Life distribution were identified as Weibull distribution with shape parameter 5.4 and Temperature-Humidity model was fitted as an acceleration model.

Electrical Properties of $Ba_{1-x}(Bi_{0.5}K_{0.5})TiO_3$ according to $(Bi_{0.5}K_{0.5})TiO_3$ for Pb-free PTC (Pb-free PTC에 있어서 $(Bi_{0.5}K_{0.5})TiO_3$ 첨가에 따른 $Ba_{1-x}(Bi_{0.5}K_{0.5})TiO_3$의 전기적특성)

  • Lee, Mi-Jai;Choi, Byung-Hyun;Paik, Jong-Hoo;Kim, Bip-Nam;Lee, Woo-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.35-36
    • /
    • 2008
  • PTC thermistor are characterized by an increase in the electrical resistance with temperature. The PTC materials of middle Curie point were produced or that of high Curie point (above $200^{\circ}C$), it was determined that compositional modifications of $Pb^{2+}$ for $Ba^{2+}$ produce change sin the Curie point to higher temperature. PTC ceramic materials with the Curie point above $120^{\circ}C$ were prepared by adding $PbTiO_3$, PbO or $Pb_3O_4$ into $BaTiO_3$. Thereby, adding $Pb^{2+}$ into $BaTiO_3$-based PTC material to improve Tc was studied broadly, however, weal know that PbO was poisonous and prone to volatilize, then to pollute the circumstance and hurt to people, so we should dope other innocuous additives instead of lead to increase Tc of composite PTC material. In order to prepare lead-free $BaTiO_3$-based PTC with middle Curie point, the incorporation on $Bi_{1/2}K_{1/2}TiO_3$ into $BaTiO_3$-based ceramics was investigated on samples containing 0, 1, 2, 3, 4, and 50mol% of $Bi_{1/2}K_{1/2}TiO_3$. $Bi_{1/2}K_{1/2}TiO_3$ was compounded as standby material by conventional solid-state reaction technique. The starting materials were $Bi_2O_3$, $K_2CO_3$, $BaCO_3$ and $TiO_2$ powder, and using solid-state reaction method, too. The microstructures of samples were investigated by SEM, DSC, XRD and dielectric properties. Phase composition and lattice parameters were investigated by X-ray diffraction.

  • PDF

Effect of $BaTiO_3$ according to $(Bi_{0.5}Na_{0.5})TiO_3$ for Pb-free PTC (Pb-free PTC에 있어서 $(Bi_{0.5}Na_{0.5})TiO_3$ 첨가에 따른 $BaTiO_3$ 효과)

  • Lee, Mi-Jai;Paik, Jong-Hoo;Kim, Sei-Ki;Kim, Bip-Nam;Lee, Woo-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.57-58
    • /
    • 2008
  • PTC thermistor are characterized by an increase in the electrical resistance with temperature. The PTC materials of middle Curie point were produced or that of high Curie point (above $200^{\circ}C$), it was determined that compositional modifications of $Pb^{2+}$ for $Ba^{2+}$ produce change sin the Curie point to higher temperature. PTC ceramic materials with the Curie point above $120^{\circ}C$ were prepared by adding $PbTiO_3$, PbO or $Pb_3O_4$ into $BaTiO_3$. Thereby, adding $Pb^{2+}$ into $BaTiO_3$-based PTC material to improve Tc was studied broadly, however, weal know that PbO was poisonous and prone to volatilize, then to pollute the circumstance and hurt to people, so we should dope other innocuous additives instead of lead to increase Tc of composite PTC material. In order to prepare lead-free $BaTiO_3$-based PTC with middle Curie point, the incorporation on $Bi_{1/2}Na_{1/2}TiO_3$ into $BaTiO_3$-based ceramics was investigated on samples containing 0, 1, 2, 3, 4, and 50mol% of $Bi_{1/2}Na_{1/2}TiO_3$. $Bi_{1/2}Na_{1/2}TiO_3$ was compounded as standby material by conventional solid-state reaction technique. The starting materials were $Bi_{1/2}Na_{1/2}TiO_3$, $BaCO_3$, $TiO_2$ and $Y_2O_3$ powder, and using solid-state reaction method, too. The microstructures of samples were investigated by SEM, DSC, XRD and dielectric properties. Phase composition and lattice parameters were investigated by X-ray diffraction.

  • PDF

Properties of the Positive Temperature Coefficient Resistor Behavior on the Na and K Doped BaTiO3 (Na 및 K 치환에 따른 BaTiO3의 Positive Temperature Coefficient Resistor 특성)

  • Lee, Mi-Jai;Lim, Tae-Young;Kim, Sei-Ki;Hwang, Jong-Hee;Kim, Jin-Ho;Seo, Won-Seon
    • Korean Journal of Materials Research
    • /
    • v.20 no.12
    • /
    • pp.654-660
    • /
    • 2010
  • The influences of Na and K content on the crystal phase, the microstructure and the electrical property of $BaTiO_3$-based thermistors was found to show typical PTC effects. The crystal phase of powder calcined at $1000^{\circ}C$ for 4hrs showed a single phase with $BaTiO_3$, and the crystal structure was transformed from tetragonal to cubic phase according to added amounts of Na and K. In XRD results at $43^{\circ}\sim47^{\circ}$, the $(Ba_{0.858}Na_{0.071}K_{0.071})(Ti_{0.9985}Nb_{0.0015})O_{3-\delta}$ showed (002) and (200) peaks but the $(Ba_{0.762}Na_{0.119}K_{0.119})(Ti_{0.9975}Nb_{0.0025})O_{3-\delta}$ showed (002), (020) and (200) peaks. In sintered bodies, those calcined at $600^{\circ}C$ rather than at $1000^{\circ}C$ were dense, and for certain amounts of Na and K showed rapid decreases in grain size. In relative permittivity, the curie temperature due to the transformation of ferroelectric phase rose with added Na and K but decreased in terms of relative permittivity. In the result of the R-T curve, the sintered bodies have curie temperatures of about $140^{\circ}C$ and the resistivity of sintered bodies have scores of $\Omega{\cdot}cm$; the jump order of sintered bodies was shown to be more than $10^4$ in powder calcined at $1000^{\circ}C$.