• Title/Summary/Keyword: PSP crude toxin

Search Result 2, Processing Time 0.019 seconds

Reestablishment of Approval Toxin Amount in Paralytic Shellfish Poison-Infested Shellfish 3. Thermal Resistance of Paralytic Shellfish Poison (마비성 패류독 허용기준치 재설정을 위한 연구 3. 마비성 패류독의 내열성)

  • 신일식;김영만
    • Journal of Food Hygiene and Safety
    • /
    • v.13 no.2
    • /
    • pp.143-148
    • /
    • 1998
  • The purpose of this study was to determine the kinetics of paralytic shellfish poison (PSP) destruction at various temperature. The toxic digestive gland homogenate of blue mussel (Mytilus edulis), PSP crude toxin, gonyautoxin group and saxitoxin group were heated at temperature ranging from 90 to $120^{\circ}C$, and then the toxicities were measured in samples heated for various time intervals. The rate constant (k) of the toxic digestive gland homogenate, PSP crude toxin, gonyautoxin group and saxitoxin group were $3.28{\times}10^{-2},\;1.20{\times}10^{-2},\;5.88{\times}10^{-2}\;and\;2.58{\times}10^{-2}\;at\;120^{\circ}C$, respectively. The decimal reduction time (D-value) of the toxic digestive gland homogenate, PSP crude toxin, gonyautoxin group and saxitoxin group were 70, 192, 39 and 89 at $120^{\circ}C$, respectively. These results indicate that PSP crude toxin is most heat-stable of 4 types of PSP toxins and PSP toxin are more heat-stable than food poisoning bacteria and spores. The retorting condition to reduce PSP toxicity below quarantine limit ($80\;\mu\textrm{g}/100\;g$ in Korea and America, 4 MU/g in Japan) could be calculated by rate constant. For example, the digestive gland homogenate having a initial toxicity of $200\;\mu\textrm{g}/100\;g$ could have toxicity below quarantine limit when heated at $90^{\circ}C$ for 129 min., $100^{\circ}C$ for 82 min., $110^{\circ}C$ for 48 min. and $120^{\circ}C$ for 28 min. These results suggest that commercial retorting condition ($115^{\circ}C$ for 70 min) in Korea is enough to reduce toxicity below quarantine limit from initial toxicity of $200\;\mu\textrm{g}/100\;g$. From these results, the quarantine limit of PSP-infested shellfish for canning can be level up to raw score of $200\;\mu\textrm{g}/100\;g$.

  • PDF

Change of Paralytic Shellfish Poison Components during Bacterial Detoxification (마비성패류독의 생물학적 제독 -2. 해수에서 분리한 Enterobacter sp. CW-6를 이용한 마비성패류독의 분해-)

  • PARK Mi Jung;LEE Hee Jung;LEE Tae Seek;KIM Ji Hoe;LEE Tae Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.6
    • /
    • pp.550-553
    • /
    • 2000
  • Optimum temperature for paralytic shellfish poison (PSP) detoxofication of Enterobacter sp. CW-6 isolated from sea water and changes of contents and ingredients composition of PSP during bacterial detoxification process were investigated. Enterobacter sp. CW-6 detoxicated $61.5{\~}67.7{\%}\;and\;87.4{\~}96.8{\%}$ of initial PSP toxicity ($25.0{\~}28.5\;nmole/g$) after $5{\~}12$ days at 30 and $35^{\circ}C$, identified as optimal growth temperature, respectively. The detoxification rate of Enterobacter sp. CW-6 for crude PSP with initial concentration of 38.2 nmole/g after 8 and 12 days at $30^{\circ}C$ in the Marine broth was 88.4 and $92.7{\%}$, respectively. During bacterial detoxification process using crude toxin solution, temporary increasement of STX group was detected and identified that was derived from GTX2, 3 group. The detoxification rate of Enterobaoter sp. CW-6 on purified GTX1 and 4 with initial concentration 47 nmole/g and 37 nmole/g were more than $90{\%}$ after 12 days in the marine broth at $30^{\circ}C$. Enterobacter sp. CW-6 also showed a detoxification activity on purified GTX2 and 3, and the detoxification rate for the initial concentration 25.6 nmole/g after 12 days was $66.4{\%}$.

  • PDF