• 제목/요약/키워드: PSO (Particle Swarm Optimization) Algorithm

검색결과 329건 처리시간 0.031초

Optimum design of cantilever retaining walls under seismic loads using a hybrid TLBO algorithm

  • Temur, Rasim
    • Geomechanics and Engineering
    • /
    • 제24권3호
    • /
    • pp.237-251
    • /
    • 2021
  • The main purpose of this study is to investigate the performance of the proposed hybrid teaching-learning based optimization algorithm on the optimum design of reinforced concrete (RC) cantilever retaining walls. For this purpose, three different design examples are optimized with 100 independent runs considering continuous and discrete variables. In order to determine the algorithm performance, the optimization results were compared with the outcomes of the nine powerful meta-heuristic algorithms applied to this problem, previously: the big bang-big crunch (BB-BC), the biogeography based optimization (BBO), the flower pollination (FPA), the grey wolf optimization (GWO), the harmony search (HS), the particle swarm optimization (PSO), the teaching-learning based optimization (TLBO), the jaya (JA), and Rao-3 algorithms. Moreover, Rao-1 and Rao-2 algorithms are applied to this design problem for the first time. The objective function is defined as minimizing the total material and labor costs including concrete, steel, and formwork per unit length of the cantilever retaining walls subjected to the requirements of the American Concrete Institute (ACI 318-05). Furthermore, the effects of peak ground acceleration value on minimum total cost is investigated using various stem height, surcharge loads, and backfill slope angle. Finally, the most robust results were obtained by HTLBO with 50 populations. Consequently the optimization results show that, depending on the increase in PGA value, the optimum cost of RC cantilever retaining walls increases smoothly with the stem height but increases rapidly with the surcharge loads and backfill slope angle.

Moth-Flame Optimization-Based Maximum Power Point Tracking for Photovoltaic Systems Under Partial Shading Conditions

  • Shi, Ji-Ying;Zhang, Deng-Yu;Xue, Fei;Li, Ya-Jing;Qiao, Wen;Yang, Wen-Jing;Xu, Yi-Ming;Yang, Ting
    • Journal of Power Electronics
    • /
    • 제19권5호
    • /
    • pp.1248-1258
    • /
    • 2019
  • This paper presents a moth-flame optimization (MFO)-based maximum power point tracking (MPPT) method for photovoltaic (PV) systems. The MFO algorithm is a new optimization method that exhibits satisfactory performance in terms of exploration, exploitation, local optima avoidance, and convergence. Therefore, the MFO algorithm is quite suitable for solving multiple peaks of PV systems under partial shading conditions (PSCs). The proposed MFO-MPPT is compared with four MPPT algorithms, namely the perturb and observe (P&O)-MPPT, incremental conductance (INC)-MPPT, particle swarm optimization (PSO)-MPPT and whale optimization algorithm (WOA)-MPPT. Simulation and experiment results demonstrate that the proposed algorithm can extract the global maximum power point (MPP) with greater tracking speed and accuracy under various conditions.

C-Means 클러스터링 기반의 Type-2 퍼지 논리 시스템을 이용한 비선형 모델 설계 (Design of Nonlinear Model Using Type-2 Fuzzy Logic System by Means of C-Means Clustering)

  • 백진열;이영일;오성권
    • 한국지능시스템학회논문지
    • /
    • 제18권6호
    • /
    • pp.842-848
    • /
    • 2008
  • 본 논문에서는 비선형 모델의 설계를 위해 Type-2 퍼지 논리 집합을 이용하여 불확실성 문제를 다룬다. 제안된 모델은 규칙의 전 후반부가 Type-2 퍼지 집합으로 주어진 Type-2 퍼지 논리 시스템을 설계하고 불확실성의 변화에 대한 비선형 모델의 성능을 해석한다 여기서 규칙 전반부 멤버쉽 함수의 정점 선택은 C-means 클러스터링 알고리즘을 이용하고, 규칙 무반부 퍼지 집합의 정점 결정에는 경사 하강법(Gradient descent method)을 이용한 오류 역전파 알고리즘을 사용하여 학습한다. 또한, 제안된 모델에 관련된 파라미터는 입자 군집 최적화(Particle Swarm Optimization; PSO) 알고리즘으로 동조한다. 제안된 모델은 모의 데이터집합(Synthetic dadaset), Mackey-Glass 시계열 공정 데이터를 적용하여 논증되고, 기존 Type-1 퍼지 논리 시스템과의 근사화 및 일반화 능력에 대하여 비교 토의한다.

원심압축기 최적 임펠러 형상설계에 관한 연구 (A Study on the Design Method to Optimize an Impeller of Centrifugal Compressor)

  • 조수용;이영덕;안국영;김영철
    • 한국유체기계학회 논문집
    • /
    • 제16권1호
    • /
    • pp.11-16
    • /
    • 2013
  • A numerical study was conducted to improve the performance of an impeller of centrifugal compressor. Nine design variables were chosen with constraints. Only meridional contours and blade profile were adjusted. ANN (Artificial Neural Net) was adopted as a main optimization algorithm with PSO (Particle Swarm Optimization) in order to reduce the optimization time. At first, ANN was learned and trained with the design variable sets which were obtained using DOE (Design of Experiment). This ANN was continuously improved its accuracy for each generation of which population was one hundred. New design variable set in each generation was selected using a non-gradient based method of PSO in order to obtain the global optimized result. After $7^{th}$ generation, the prediction difference of efficiency and pressure ratio between ANN and CFD was less than 0.6%. From more than 1,200 design variable sets, a pareto of efficiency versus pressure ratio was obtained and an optimized result was selected based on the multi-objective function. On this optimized impeller, the efficiency and pressure ratio were improved by 1% and 9.3%, respectively.

Bayesian MBLRP 모형을 이용한 시간강수량 모의 기법 개발 (A Development of Hourly Rainfall Simulation Technique Based on Bayesian MBLRP Model)

  • 김장경;권현한;김동균
    • 대한토목학회논문집
    • /
    • 제34권3호
    • /
    • pp.821-831
    • /
    • 2014
  • 추계학적 강수발생 및 모의기법은 수문학적 모형의 입력 자료로써 널리 이용되고 있다. 그러나 Modified Bartlett-Lewis Rectangular Pulse(MBLRP)와 같은 추계학적 포아송 클러스터 강수생성 모형에 대해서 국부최적화 방법을 통한 매개변수 추정 방법은 매개변수의 신뢰성에 상당한 영향을 주는 것으로 알려져 있다. 최근에는 MBLRP 모형의 국부해추정 문제를 해소하기 위하여 Particle Swarm Optimization (PSO) 또는 Shuffled Complex Evolution developed at The University of Arizona (SCE-UA) 등 매개변수 추정 성능이 우수한 전역최적화기법이 도입되고 있지만, 제한된 매개변수 공간에서 항상 신뢰성 있는 매개변수 추정이 가능한 것은 아니다. 뿐만 아니라, 모형의 매개변수들이 갖고 있는 불확실성에 관한 연구는 아직 충분히 논의되지 않았다. 이러한 관점에서 본 연구는 Bayesian 기법과 연계한 MBLRP 모형을 개발하였으며 각 매개변수들의 사후분포(Posterior Distribution)를 유도하여 매개변수가 내포하는 불확실성을 정량적으로 평가하였다. 그 결과 관측값에 대한 시간단위 이하 강수발생 통계치를 효과적으로 복원하고 있음을 확인할 수 있었다.

Optimal Switching Pattern for PWM AC-AC Converters Using Bee Colony Optimization

  • Khamsen, Wanchai;Aurasopon, Apinan;Boonchuay, Chanwit
    • Journal of Power Electronics
    • /
    • 제14권2호
    • /
    • pp.362-368
    • /
    • 2014
  • This paper proposes a harmonic reduction approach for a pulse width modulation (PWM) AC-AC converters using Bee Colony Optimization (BCO). The optimal switching angles are provided by BCO to minimize harmonic distortions. The sequences of the PWM switching angles are considered as a technical constraint. In this paper, simulation results from various optimization techniques including BCO, Genetic Algorithm (GA), and Particle Swarm Optimization (PSO) are compared. The test results indicate that BCO can provide a better solution than the others in terms of power quality and power factor improvement. Lastly, experiments on a 200W AC-AC converter confirm the performance of the proposed switching pattern in reducing harmonic distortions of the output waveform.

PSO 알고리즘을 이용한 동적부하모델링 (Dynamic Load Modeling Using a PSO algorithm)

  • 김영곤;송화창;이병준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.93_94
    • /
    • 2009
  • Load modeling has a significant impact on power system analysis and control. Estimating model parameters can be considered as important as stability analysis itself for accurate analysis and control. This paper presents a method for estimating parameters for load models, which include static and dynamic parts, based on particle swarm optimization. The method effectively searches a suitable set of parameters minimizing the fitness function. This paper applies the method to simulation data obtained from 8-bus test system including induction motors.

  • PDF

PSO 알고리즘을 이용한 온실가스배출량에 따른 구역전기사업자의 최적 운영에 관한 연구 (An Optimal Operation of Community Energy System Considering Greenhouse Gas Emission Using PSO Algorithm)

  • 김성열;배인수;김진오
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.498-499
    • /
    • 2008
  • 신재생에너지의 개발, 정부의 규제 완화와 환경적 이유로 인해 배전계통에서 분산전원은 점차 증가하는 추세이다. 최근 분산전원을 소유한 구역전기사업자가 전력시장의 새로운 시장 참여자로서 대두되고 있다. 분산전원을 소유한 구역전기사업자는 최대 이윤을 얻기 위해서 매 시간마다 발전량을 변화시켜야 한다. 본 논문에서는 배전계통에 연계된 분산전원의 최적 운영에 대해서 소개할 것이다. 이 때, 최적화의 목적은 구역전기사업자 이윤의 최대화이며, 국제적 환경규제에 따른 온실가스배출량을 고려하여 발전비용을 산출한다. 산출기법으로 Particle Swarm Optimization 알고리즘을 이용한다.

  • PDF

Determining the Optimum Brands Diversity of Cheese Using PSO (Case Study: Mashhad)

  • Dadrasmoghadam, Amir;Ghorbani, Mohammad;Karbasi, Alireza;Kohansal, Mohammad Reza
    • Industrial Engineering and Management Systems
    • /
    • 제15권4호
    • /
    • pp.318-323
    • /
    • 2016
  • In the current study, factors affecting cheese brands products in grocery stores were evaluated with an emphasis on diversity. The sample data were collected from Noushad and Pegah Milk Industry in 2015 and data were extracted, reviewed, and analyzed from 435 grocery stores in Mashhad using seemingly unrelated regression model and particle swarm optimization algorithm. Results showed that optimum amount of Kalleh product diversity is higher than other competitors in the market, and Kalleh UF diversity is 100 to 250 grams, and Kalleh UF diversity with weight of 300 to 500 grams is more than other modes of diversity, and Kalleh brand must remove tin cheese from the market. Sabah Brand also should eliminate its glass and creamy diversity from market, UF diversity is mostly welcomed in market.

Power Quality Optimal Control of Railway Static Power Conditioners Based on Electric Railway Power Supply Systems

  • Jiang, Youhua;Wang, Wenji;Jiang, Xiangwei;Zhao, Le;Cao, Yilong
    • Journal of Power Electronics
    • /
    • 제19권5호
    • /
    • pp.1315-1325
    • /
    • 2019
  • Aiming at the negative sequence and harmonic problems in the operation of railway static power conditioners, an optimization compensation strategy for negative sequence and harmonics is studied in this paper. First, the hybrid RPC topology and compensation principle are analyzed to obtain different compensation zone states and current capacities. Second, in order to optimize the RPC capacity configuration, the minimum RPC compensation capacity is calculated according to constraint conditions, and the optimal compensation coefficient and compensation angle are obtained. In addition, the voltage unbalance ${\varepsilon}_U$ and power factor requirements are satisfied. A PSO (Particle Swarm Optimization) algorithm is used to calculate the three indexes for minimum compensating energy. The proposed method can precisely calculate the optimal compensation capacity in real time. Finally, MATLAB simulations and an experimental platform verify the effectiveness and economics of the proposed algorithm.