• Title/Summary/Keyword: PSN-PZT system ceramics

Search Result 15, Processing Time 0.021 seconds

Piezoelectric Characteristics of PZT-PSN Ceramics Depending on WO3Addition (PZT-PSN 세라믹스의 WO3의 첨가량에 따른 압전 특성)

  • 배숙희;김성곤;김철수;이경화;이상렬
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.9
    • /
    • pp.794-797
    • /
    • 2002
  • Piezoelectric properties of PZT-PSN ceramics were investigated as a function of WO$_3$ addition from 0 wt% to 6.0 wt%. The dielectric and piezoelectric characteristics of PZT-PSN ceramics have been investigated at different calcination (80$0^{\circ}C$~90$0^{\circ}C$) and sintering (110$0^{\circ}C$~130$0^{\circ}C$) temperatures. The grain size was increased with the addition of WO$_3$and the sintering temperatures. Anisotropic properties of electromechanical coupling coefficient and piezoelectric coefficient are proven to be dependent on processing temperatures and amount of addition. At the specimen with 0.6 wt% WO$_3$ addition, using calcination temperature of 80$0^{\circ}C$ and sintering temperature of 110$0^{\circ}C$ , mechanical quality factor(Q$_{m}$) and electromechanical coupling coefficient(k$_{p}$) showed the excellent results of 1560 and 0.48, respectively Experimental results indicated that the PZT-PSN system ceramics with WO$_3$impurity could be effectively used for the microtransformer and actuator applications, etc.etc.

Effects of CuO on Low-temperature Sintering Characteristics of PSN-PZT System Ceramics (CuO가 PSN-PZT세라믹스의 저온소결 특성에 미치는 영향)

  • 류주현;우원희;오동언;정영호;정광현;정문영;정회승
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12S
    • /
    • pp.1200-1204
    • /
    • 2003
  • In this study, in order to develop the low temperature sintering ceramics for multi-layer piezoelectric transformer, PSN-PZT system ceramics were manufactured as a function of CuO addition and their dielectric and piezoelectric characteristics were Investigated. CuO addition facilitated densification at low temperature due to the effect of Cu$_2$O-PbO liquid phase. Through the X-ray diffraction pattern study, absence of second phase unwanted was confirmed. Among the specimen to which CuO was added, the 0.6wt% CuO added specimen sintered at 900$^{\circ}C$ and 920$^{\circ}C$ showed the most excellent mechanical quality factor and electromechanical coupling factor, respectively. Besides the densification accelerator, CuO acted as a accepter and increased mechanical quality. Compared with the specimen with no addition sintered at 1150$^{\circ}C$ , the 0.6wt% CuO added specimen sintered at 920$^{\circ}C$ showed the appropriate dielectric and piezoelectric characteristics for multi-layer piezoelectric transformer.

Effect of CuO on the PSN-PNN-PZT Ceramics (CuO가 PSN-PNN-PZT 세라믹스에 미치는 영향)

  • Nam, Seung-Hyon;Yoo, Ju-Hyun;Lee, Su-Ho;Yoon, Hyon-Sang;Jeong, Yeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.701-704
    • /
    • 2003
  • In this study, to develop the low temperature sintering ceramics for multilayer piezoelectric transformer, PSN-PNN-PZT system ceramics were manufactured as a function of CuO addition. Its dielectric and piezoelectric characteristics were investigated. With increasing the amount of CuO addition, grain size was increased and density increased until 0.3wt% CuO. Taking into consideration electromechanical coupling factor(kp) of 0.53, mechanical quality factor(Qm) of 423 and ${\epsilon}r$ of 1759, it can be cincluded that the CuO 0.5wt% added composition sintered at $920^{\circ}C$ is suitable for piezoelectric transformer application if Qm is improved.

  • PDF

Effect of MnO2 on piezoelectric properties of PSN-PZT ceramics for piezoelectric actuator applications (압전 액츄에이터용 PSN-PZT 세라믹스의 압전 특성에 미치는 MnO2 첨가 효과)

  • Choi, J.W.;Song, K.H.;Kim, H.J.;Yoon, S.J.;Yoo, K.S.
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.120-125
    • /
    • 2007
  • The effect of $MnO_{2}$ as a sintering additive on the microstructures and the piezoelectric properties, especially mechanical quality factor, of 0.05 Pb$(Sb_{0.5}Nb_{0.5})O_{3}$-0.95 Pb$(Zr_{0.52}Ti_{0.48})O_{3}$ (PSN-PZT) piezoelectric ceramics was investigated. The samples were sintered at $1250^{\circ}C$ for 2 h. The crystal structure and surface morphology of the sample were examined using XRD and FE-SEM, respectively. A study on the influence of $MnO_{2}$ additives on the dielectric and piezoelectric properties showed that the $MnO_{2}$-added PSN-PZT system exhibited a high mechanical quality factor and well-situated piezoelectric properties. The optimized results of $d_{33}$ (319 pC/N), $k_{p}$ (55 %), and $Q_{m}$ (751.24) were obtained at 0.2 wt% $MnO_{2}$ added PSN-PZT piezoelectrics.

Effect of CeO2 on piezoelectric properties of PSN-PZT ceramics for a hypersonic sound speaker application (지향성 스피커용 PSN-PZT 세라믹스의 압전 특성에 미치는 CeO2 첨가 효과)

  • Choi, J.B.;Song, K.H.;Kim, H.J.;Hwang, S.I.;Yoo, K.S.
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.127-132
    • /
    • 2008
  • The effect of $CeO_2$ as a sintering additive on the microstructure and the piezoelectric property of yPb$(Sb_{0.5}Nb_{0.5})O_3$-(1-y)Pb$(Zr_{0.52}Ti_{0.48})O_3$ ($0{\leq}y{\leq}0.1$, PSN-PZT) for a hypersonic sound speaker (HSS) application was investigated. The samples were sintered at $1250^{\circ}C$ for 2 h. The crystal structure and surface morphology of the samples were examined using XRD and FE-SEM, respectively. Study on the influence of $CeO_2$ additives on the dielectric and piezoelectric properties indicated that the $CeO_2$-added PSN-PZT system had a high piezoelectric properties. The optimized results of ${\varepsilon}_r=1209$, $K_p$=52% $d_{33}$=351(pC/N) and $Q_m$=1230.16 were obtained at 0.4 wt.% $CeO_2$-added PSN-PZT.

Structural and Piezoelectric Properties of MnO2-Doped PZT-PSN Ceramics for Ultrasonic Vibrator (초음파 진동자용 MnO2가 Doping된 PZT-PSN 세라믹스의 구조 및 압전 특성)

  • Cha, Yoo-Jeong;Kim, Chang-Il;Kim, Kyoung-Jun;Jeong, Young-Hun;Lee, Young-Jin;Lee, Hai-Gun;Paik, Jong-Hoo
    • Korean Journal of Materials Research
    • /
    • v.19 no.4
    • /
    • pp.198-202
    • /
    • 2009
  • For use in ultrasonic actuators, we investigated the structural and piezoelectric properties of $(1\;-\;x)Pb(Zr_{0.515}Ti_{0.485})O_3$ - $xPb(Sb_{1/2}Nb_{1/2})O_3$ + 0.5 wt% $MnO_2$ [(1 - x)PZT - xPSN + $MnO_2$] ceramics with a variation of x (x = 0.02, 0.04, 0.06, 0.08). All the ceramics, which were sintered at $1250^{\circ}C$ for 2 h, showed a typical perovskite structure, implying that they were well synthesized. A homogeneous micro structure was also developed for the specimens, and their average grain size was slightly decreased to $1.3{\mu}m$ by increasing x to 0.8. Moreover, a second phase with a pyrochlore structure appeared when x was above 0.06, which resulted in the deterioration of their piezoelectric properties. However, the 0.96PZT-0.04PSN+$MnO_2$ ceramics, which corresponds with a morphotropic phase boundary (MPB) composition in the (1 - x)PZT - xPSN + $MnO_2$ system, exhibited good piezoelectric properties: a piezoelectric constant ($d_{33}$) of 325 pC/N, an electromechanical coupling factor ($k_p$) of 70.8%, and a mechanical quality factor ($Q_m$) of 1779. The specimens with a relatively high curie temperature ($T_c$) of $305^{\circ}C$ also showed a significantly high dielectric constant (${\varepsilon}_r$) value of 1109. Therefore, the 0.96PZT - 0.04PSN + $MnO_2$ ceramics are suitable for use in ultrasonic vibrators.

Effect of $MnO_2$ on the PSN-PNN-PZT Ceramics ($MnO_2$가 PSN-PNN-PZT 세라믹스에 미치는 영향)

  • Nam, Seung-Hyon;Yoo, Ju-Hyun;Lee, Su-Ho;Kim, Hyun-Ki;Bah, Sen-Ki
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.236-239
    • /
    • 2003
  • In this study, to develop the low temperature sintering ceramics for piezoelectric transformer, PSN-PNN-PZT system ceramics were manufactured as a function of $MnO_2$ addition. Its dielectric and piezoelectric characteristics were investigated. With increasing the amount of $MnO_2$ addition, electromechanical coupling factor(kp) were increased until 0.3wt% $MnO_2$ and that after decreased. mechanical quality factor(Qm) showed the maxinum value at 0.5wt% $MnO_2$. For piezoelectric transformer application, the 0.5wt% $MnO_2$ added specimen sintered at $1,000^{\circ}C$ showed the proper value of ${\varepsilon}r$= 1,646, kp=0.55 and Qm=439.

  • PDF

Energy Efficient Alloy Design in PSN-PMN-PZT Ceramic System for Piezoelectric Transformer Application (고효율 압전 트랜스포머용 PSN-PMN-PZT 조성 설계)

  • Choi Yong-Gil;Ur Soon-Chul;Yoon Man-Soon
    • Korean Journal of Materials Research
    • /
    • v.15 no.12
    • /
    • pp.814-817
    • /
    • 2005
  • In order to enhance energy efficiency in high electric conversion devices such as Power transformers, which need to have high power properties, an alloy design approach in $Pb(Zr,Ti)O_3(PZT)$ base ceramic system was attempted $0.03Pb(Sb_{0.5}Nb_{0.5})O_3-0.03Pb(Mn_{1/3}Nb_{2/3})O_3-(0.94-x)PbTiO_3-xPbZrO_3$[PSN-PMN- PZT] ceramics were synthesized by conventional bulk ceramic processing technique. To improve power properties, the various Zr/Ti ratio was varied ]lear their morphotropic phase boundary (MPB) composition of PSN-PMN-PZT system and their effects on subsequent piezoelectric and dielectric properties for the transformer application at high power were systematically investigated using an impedance analyzer. Microstructure and phase information were characterized using X-ray diffractometer (XRD), a scanning electron microscope (SEM) and others. When the Zr/Ti ratio was 0.415/0.465, the value of $Q_m\;and\;k_p$ were shown to reach to the maximum, indicating that this alloy design can be a feasible composition :or high power transformer.

Electrical Characteristics of the High Power Piezoelectric transformer Using PSN-PZT system ceramics (PSN-PZT계 세라믹스를 이용한 고출력 압전 트랜스포머의 전기적 특성)

  • 이용우;류주현;윤광희;정회승;서성재;김종선
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.4
    • /
    • pp.286-293
    • /
    • 2000
  • In this paper we investigated the structural dielectric and piezoelectric properties of 0.03Pb(Sb$\_$1/2//Nb$\_$1/2/)-0.97Pb(Zr$\_$0.495//Ti$\_$0.505/)O$_3$+0.5 wt% excess PbO + wt% MnO(X=0, 0.1, 0.3, 0.5, 0.7) ceramics to develop the high-power piezoelectric transformer. The piezoelectric transformers with dimension of 27.5$\times$27.5$\times$2.5[mm$^3$]were fabricated and their electrical properties were measured. Maxima of piezoelectric properties such as electro-mechanical coupling factor of 0.534 and mechanical quality factor of 1487 were obtained for the PSN-PZT with 0.3wt% MnO. voltage step-up ratios of piezoelectric transformers at 500[Ω]and no load were 0.78, 12.82, respectively. The maximum efficiency of piezoelectric transformer was 98.6% at 800[Ω]. While the 14W fluorescent lamp were driven by the piezoelectric transformer for more than 20[min], increment of temperature in the piezoelectric transformer was 7[$\^{C}$].

  • PDF

Dielectric and Piezoelectric Characteristics of PSN-PNN-PZT Ceramics with the Sintering Temperature (소성온도에 따른 PSN-PNN-PZT 세라믹스에 미치는 압전특성)

  • Nam, Seung-Hyon;Ryu, Ju-Hyun;Lee, Su-Ho;Park, Chang-Yub;Yoon, Hyun-Sang;An, Byung-Ryul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.326-329
    • /
    • 2002
  • In this study, to develop the low temperature sintering ceramics for multilayer piezoelectric transformer, $0.02Pb(Sb_{1/2}Nb_{1/2})O_{3}-0.13Pb(Ni_{1/3}Nb_{2/3}O_3-0.85Pb(Zr,Ti)O_{3}$ system ceramics were manufactured with the variations of sintering temperature between 1,090 and $1240^{\circ}C$ and its dielectric and piezoelectric characteristics were investigated. With increasing the sintering temperature, electromechanical coupling factor (kp) and mechanical quality factor(Qm) were decreased. At $1,180^{\circ}C$ sintered specimen showed maximum value of 0.535 electromechanical coupling factor (kp). On the other hand,. The specimen sintered at $1,180^{\circ}C$ showed the maximum value of ${\varepsilon}r$=1,571, Qm=1,181 respectively.

  • PDF