• Title/Summary/Keyword: PSMD

Search Result 5, Processing Time 0.016 seconds

Identification of Coupling and Repulsion Phase DNA Marker Associated With an Allele of a Gene Conferring Host Plant Resistance to Pigeonpea sterility mosaic virus (PPSMV) in Pigeonpea (Cajanus cajan L. Millsp.)

  • Daspute, Abhijit;Fakrudin, B.
    • The Plant Pathology Journal
    • /
    • v.31 no.1
    • /
    • pp.33-40
    • /
    • 2015
  • Pigeonpea Sterility Mosaic Disease (PSMD) is an important foliar disease caused by Pigeonpea sterility mosaic virus (PPSMV) which is transmitted by eriophyid mites (Aceria cajani Channabasavanna). In present study, a F2 mapping population comprising 325 individuals was developed by crossing PSMD susceptible genotype (Gullyal white) and PSMD resistant genotype (BSMR 736). We identified a set of 32 out of 300 short decamer random DNA markers that showed polymorphism between Gullyal white and BSMR 736 parents. Among them, eleven DNA markers showed polymorphism including coupling and repulsion phase type of polymorphism across the parents. Bulked Segregant Analysis (BSA), revealed that the DNA marker, IABTPPN7, produced a single coupling phase marker (IABTPPN $7_{414}$) and a repulsion phase marker (IABTPPN $7_{983}$) co-segregating with PSMD reaction. Screening of 325 F2 population using IABTPPN7 revealed that the repulsion phase marker, IABTPPN $7_{983}$, was co-segregating with the PSMD responsive SV1 at a distance of 23.9 cM for Bidar PPSMV isolate. On the other hand, the coupling phase marker IABTPPN $7_{414}$ did not show any linkage with PSMD resistance. Additionally, single marker analysis both IABTPPN $7_{983}$ (P<0.0001) and IABTPPN $7_{414}$ (P<0.0001) recorded a significant association with the PSMD resistance and explained a phenotypic variance of 31 and 36% respectively in $F_2$ population. The repulsion phase marker, IABTPPN7983, could be of use in Marker-Assisted Selection (MAS) in the PPSMV resistance breeding programmes of pigeonpea.

Inheritance of Pigeonpea Sterility Mosaic Disease Resistance in Pigeonpea

  • Daspute, Abhijit;Fakrudin, B.;Bhairappanavar, Shivarudrappa B.;Kavil, S.P.;Narayana, Y.D.;Muniswamy, Muniswamy;Kaumar, Anil;Krishnaraj, P.U.;Yerimani, Abid;Khadi, B.M.
    • The Plant Pathology Journal
    • /
    • v.30 no.2
    • /
    • pp.188-194
    • /
    • 2014
  • A comprehensive study was conducted using PPSMV resistant (BSMR 736) and susceptible (ICP 8863) genotypes to develop a segregating population and understand the inheritance of PPSMV resistance. The observed segregation was comparable to 13 (susceptible): 3 (resistant). Hence, the inheritance was controlled by two genes, SV1 and SV2, with inhibitory gene interaction.

Synthesis and Characterization of Chelating Resins Containing Thiol Croups (티올기를 함유하는 킬레이트 수지의 합성 및 특성)

  • 박인환;방영길;김경만;주혁종
    • Polymer(Korea)
    • /
    • v.27 no.4
    • /
    • pp.330-339
    • /
    • 2003
  • Three kinds of macro-reticular bead-typed chelating resins having thiol groups were obtained from basic resins like poly(strene-co-divinylbenzene) (PSD) and poly(styrene-co-methyl methacrylate-co-divinylbenzene) (PSMD): the chelating resin (I) was prepared by chloromethylation of phenyl rings of PSD followed by thiolation using thiourea. The chelating resin (ll) was designed to provide enough space to chelate heavy metal ions; one chloromethyl group was obtained by chlorination of hydroxymethyl group provided by reduction of carboxylic ester group of PSMD and another chloromethyl group was obtained by direct chloromethylation of pendent phenyl group using chloromethyl methyl ether. Both of chloromethyl groups were thiolated by using thiourea. The chelating resin (III) was prepared by chlorosulfonation of phenyl rings of PSD followed by thiolation using sodium hydrosulfide. The adsorbtivity toward heavy metal ions was evaluated. The hydrophobic chelating resin (I) with thiol groups showed highly selective adsorption capacity f3r mercury ions. However, the chelating resin (II) with thiol groups showed mere effective adsorption capacity toward mercury ions than chelating resin (I) with thiol groups, and showed some adsorption capacity for other heavy metal ions like Cu$\^$2+/, Pb$\^$2+/, Cd$\^$2+/ and Cr$\^$3+/. On the other hand, the chelating resin (III) which have hydrophilic thiosulfonic acid groups was found to be effective adsorbents for some heavy metal ions such as Hg$\^$2+/, Cu$\^$2+/, Ni$\^$2+/, Co$\^$2+/, Cr$\^$3+/ and especially Cd$\^$2+/ and Pb$\^$2+/.

Quantitative Trait Locus and Association Studies affecting Meat Colors in Chicken : Review (닭의 육질 개량을 위한 육색 관련 양적형질좌위 및 연관마커에 관한 고찰: 총설)

  • Seo, Dongwon;Lee, Jun Heon
    • Korean Journal of Poultry Science
    • /
    • v.42 no.4
    • /
    • pp.315-325
    • /
    • 2015
  • Recently, livestock breeding is more focused on the meat quality rather than meat quantity, mainly due to the improvement of consumers' income. Among the meat quality traits, meat color is one of very important traits because meat color is the first selection criterion from the consumers in the market. Most of the economically important traits have continuous variations and these are called quantitative traits. the genomic locations affecting these traits are called quantitative trait locus (QTL), which is mostly controlled by many genes having small effects. In this study, the recent QTL and candidate gene studies were reviewed in order to meet the consumers' demand for the future market. In the chicken QTL database, three traits are related with meat colors, namely breast color (Bco), meat color (Mco), drip loss (DL) and pH. The identified number of QTLs is 33 from 13 chromosomal regions. In these QTL regions, 14 candidate genes were identified; Eight for meat color (APP, BCMO1, COL1A2, FTO, KPNA2, PSMD12, G0S2, FTSJ3), two for drip loss (AGRP, FTO) and four for pH (GALNT1, PCDH19, DIAPH1, SPP2). These QTLs and candidate genes need to be confirmed and fine mapping is ultimately needed for identification of causative variations. The recently developed chicken resource population using Korean native chicken can be used for the improvement of meat quality traits, which increase the value that needed in the chicken industry.

A replication study of genome-wide CNV association for hepatic biomarkers identifies nine genes associated with liver function

  • Kim, Hyo-Young;Byun, Mi-Jeong;Kim, Hee-Bal
    • BMB Reports
    • /
    • v.44 no.9
    • /
    • pp.578-583
    • /
    • 2011
  • Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) are biochemical markers used to test for liver diseases. Copy number variation (CNV) plays an important role in determining complex traits and is an emerging area in the study various diseases. We performed a genome-wide association study with liver function biomarkers AST and ALT in 407 unrelated Koreans. We assayed the genome-wide variations on an Affymetrix Genome-Wide 6.0 array, and CNVs were analyzed using HelixTree. Using single linear regression, 32 and 42 CNVs showed significance for AST and ALT, respectively (P value < 0.05). We compared CNV-based genes between the current study (KARE2; AST-140, ALT-172) and KARE1 (AST-1885, ALT-773) using NetBox. Results showed 9 genes (CIDEB, DFFA, PSMA3, PSMC5, PSMC6, PSMD12, PSMF1, SDC4, and SIAH1) were overlapped for AST, but no overlapped genes were found for ALT. Functional gene annotation analysis shown the proteasome pathway, Wnt signaling pathway, programmed cell death, and protein binding.