• 제목/요약/키워드: PSCAD

검색결과 742건 처리시간 0.031초

Overvoltage Protection Controller Design of Distributed Generation Connected to Power Grid Considering Islanding Condition

  • Cha, Jae-Hun;Park, Kyung-Won;Ahn, Hong-Seon;Kwon, Kyoung-Min;Oh, Jin-Hong;MAHIRANE, Philemon;Kim, Jae-Eon
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.599-607
    • /
    • 2018
  • Distributed generation (DG) is being highlighted as an alternative for future power supplies, and the number of DG systems connected to conventional power systems is steadily increasing. DG generators are designed using power electronics and can give rise to various power quality problems, such as overvoltage or overcurrent. Particularly, unintentional islanding operation can occur in a conventional power system when the power grid is separated from the DG systems. Overvoltage may occur in this situation, depending on the power generation and power consumption. However, overvoltage phenomena might not happen even when islanding occurs. Therefore, it is necessary to analyze the fault characteristics during islanding. In this study, a fault analysis of islanding operation was carried out using PSCAD/EMTDC, and a countermeasure for the overvoltage problem is proposed.

New Techniques for Impedance Characteristics Measurement of Islanded Microgrid based on Stability Analysis

  • Hou, Lixiang;Zhuo, Fang;Shi, Hongtao
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.1163-1175
    • /
    • 2016
  • In recent years, microgrids have been the focus of considerable attention in distributed energy distribution. Microgrids contain a large number of power electronic devices that can potentially cause negative impedance instability. Harmonic impedance is an important tool to analyze stability and power quality of microgrids. Harmonic impedance can also be used in harmonic source localization. Precise measurement of microgrid impedance and analysis of system stability with impedances are essential to increase stability. In this study, we introduce a new square wave current injection method for impedance measurement and stability analysis. First, three stability criteria based on impedance parameters are presented. Then, we present a new impedance measurement method for microgrids based on square wave current injection. By injecting an unbalanced line-to-line current between two lines of the AC system, the method determines all impedance information in the traditional synchronous reference frame d-q model. Finally, the microgrid impedances of each part and the overall microgrid are calculated to verify the measurement results. In the experiments, a simulation model of a three-phase AC microgrid is developed using PSCAD, and the AC system harmonic impedance measuring device is developed.

양방향 지능형 반도체 변압기의 조류제어와 입력전압 Sag 보상 특성분석 (Power flow control and Input voltage Sag compensation Analysis of Bidirectional Intelligent Semiconductor Transformer)

  • 김도현;이병권;한병문;이준영;윤영두;최남섭
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2013년도 전력전자학술대회 논문집
    • /
    • pp.345-346
    • /
    • 2013
  • 본 논문에서는 단상 1.9kV/127V, 2kVA 용량의 양방향 지능형 반도체 변압기의 시작품을 제작하고 그 동작특성을 실험적으로 분석한 내용을 기술하고 있다. 제작한 반도체 변압기는 3대의 LLC 컨버터를 입력 측은 직렬로 결합하고 출력 측은 병렬로 결합한 AC-DC 컨버터와 1대의 하드스위칭 양방향 2-Stage DC-AC 컨버터가 직렬로 결합되어 있다. 제안하는 반도체변압기의 회로적인 특성을 분석하기 위해 PSCAD/EMTDC 소프트웨어를 이용한 시뮬레이션을 실시하였고 분석을 통해 얻은 결과를 바탕으로 하드웨어 시작품을 제작하고 다양한 실험을 통해 그 동작과 성능을 검증하였다. 먼저 1차적으로는 정상동작에 대해 실험을 실시하고 얻은 결과를 시뮬레이션 결과와 비교 분석하였다. 2차적으로는 전력의 흐름에 따른 동작을 실험적으로 분석하였다. 그 후에는 입력전압에 외란이 발생하였을 때 보상성능을 순방향 조류와 역방향 조류 2가지 경우로 나누어 실험을 실시하고 그 결과를 실험결과와 비교 분석하였다. 분석한 결과 제안하는 반도체변압기는 양방향 전력흐름이 가능하고 입력전압에 Sag가 발생한 경우에도 이를 보상하여 수전단이나 부하에 전력공급이 가능함을 알 수 있었다. 향후 단상 반도체 변압기 2대를 더 제작하여 3상 3.3kV/380V, 6kVA 용량으로 확대하여 실험을 실시할 예정이다.

  • PDF

전자기 과도현상 해석을 위한 S 영역 등가시스템 PART I : 주파수 의존 시스템 등가 (S-Domain Equivalent System for Electromagnetic Transient Studies PART I : Frequency Dependent Network Equivalent)

  • 왕용필
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권11호
    • /
    • pp.632-638
    • /
    • 2003
  • Modern power systems are very complex and to model them completely is impractical for electromagnetic transient studies. Therefore areas outside the immediate area of interest must be represented by some form of frequency dependent equivalent. The s-domain rational function form of frequency dependent equivalent does not need refitting if the simulation time-step is changed in the electromagnetic transient program. This is because the s-domain rational function coefficients are independent of the simulation time-step, unlike the z-domain rational function coefficients. S-domain rational function fitting techniques for representing frequency dependent equivalents have been developed using Least Squares Fitting(LSF). However it does not suffer the implementation error that exited in this work as it ignored the instantaneous term. This paper Presents the formulation for developing 1 Port Frequency Dependent Network Equivalent(FDNE) with the instantaneous term in S-domain and illustrates its use. This 1 port FDNE have been applied to the CIGRE Benchmark Rectifier test AC system. The electromagnetic transient package PSCAD/EMTDC is used to assess the transient response of the 1 port (FDNE) developed with Thevenin and Norton Equivalent network. The study results have indicated the robustness and accuracy of 1 port FDNE for electromagnetic transient studies.

접지방식이 상이한 철도배전계통의 연장급전을 위한 전기적 특성분석 (Analysis of electric characteristics for extension power supply between different grounding railway distribution system)

  • 정호성;한문섭;이장무;권삼영;박현준
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 추계학술대회 논문집
    • /
    • pp.736-741
    • /
    • 2005
  • This paper presents electric characteristics analysis and safe configuration for extension power supply between existent 6.6kV ungrounded distribution system and establishment and improvement 22.9kV direct grounding distribution system. For this, we model 6.6kV ungrounded and 22.9kV direct grounding distribution system of urban underground, ground region. and rural electrical, unelectrical region using PSCAD/EMTDC and analyze voltage drop, charging current, ground and short fault through simulation. To analyze electric characteristics of extension power supply, we simulate extension power supply of overhead line of 6.6kV ungrounded system and underground line of 22.9kV direct grounding system of rural electrical region and propose operation condition for safe extension power supply through result of analysis. Characteristics of voltage drop, charging current, ground and short fault appear almost similarly with electrical characteristic of direct power supply. However, because unbalance of phases may cause relay's malfunction of ungrounded system and ground fault current of direct grounding system may demage facilities of ungrounded system, we propose safe system configuration such as impedance grounding system of neutral point.

  • PDF

Comparative Study between Two Protection Schemes for DFIG-based Wind Generator Fault Ride Through

  • Okedu, K.E.;Muyeen, S.M.;Takahashi, R.;Tamura, J.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권1호
    • /
    • pp.8-16
    • /
    • 2012
  • Fixed speed wind turbine generators system that uses induction generator as a wind generator has the stability problem similar to a synchronous generator. On the other hand, doubly fed induction generator (DFIG) has the flexibility to control its real and reactive powers independently while being operated in variable speed mode. This paper focuses on a scheme where IG is stabilized by using DFIG during grid fault. In that case, DFIG will be heavily stressed and a remedy should be found out to protect the frequency converter as well as to allow the independent control of real and reactive powers without loosing the synchronism. For that purpose, a crowbar protection switch or DC-link protecting device can be considered. This paper presents a comparative study between two protective schemes, a crowbar circuit connected across the rotor of the DFIG and a protective device connected in the DC-link circuit of the frequency converter. Simulation analysis by using PSCAD/EMTDC shows that both schemes could effectively protect the DFIG, but the latter scheme is superior to the former, because of less circuitry involved.

제주 행원 풍력발전단지의 출력 안정화를 위한 에너지저장시스템 용량산정에 관한 연구 (A Study on the Determining ESS Capacity for Stabilizing Power Output of Haeng-won Wind Farm in Jeju)

  • 강명석;진경민;김일환;오성보;이정민
    • 한국태양에너지학회 논문집
    • /
    • 제32권1호
    • /
    • pp.25-31
    • /
    • 2012
  • This paper presents the characteristics of power generation output at Haeng-won wind farm and how to determine the optimized ESS capacity for power stabilizing. Depend on the fluctuation rate of wind power output variation, wind farm capacity and site, power stabilization will be impacted. Therefore, we need to determine proper ESS capacity. Using the actual data of Haeng-won wind farm from 2009. 3 to 2010.2., capacity of ESS was determined by moving average value. To verify the proposed algorithm, simulations are carried out with PSCAD/EMTDC program. As a result, optimal ESS capacity of Haeng-won wind farm in Jeju is estimated about 1.63 MWh.

EMTP MODELS를 이용한 거리 계전기 응동 시뮬레이션 (A Dynamic Simulation of Distance Relay Using EMTP MODELS)

  • 허정용;김철환;여상민
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권1호
    • /
    • pp.17-28
    • /
    • 2003
  • Digital technology has advanced very significantly over the years both in terms of software tools and hardware available. It is now applied extensively in many area of electrical engineering including protective relaying in power systems. Digital relays based on digital technology have many advantages over the traditional analog relays. The digital relay is able to do what is difficult or impossible in the analog relays. However, the complex algorithms associated with the digital relays are difficult to test and verify in real time on real power systems. Although non real-time simulators like PSCAD/EMTDC are employed to test the algorithms, such simulations have the disadvantage that they cannot test the relay dynamically. Hence, real-time simulators like RTDS are used, but the latter needs large space and it is very expensive. This paper uses EMTP MODELS to simulate the power system and the distance relay. The distance relay algorithm is constructed and the distance relay is interfaced with a test power system. The distance relays performance is then assessed interactively under various fault types, fault distances and fault inception angles. The test results show that we can simulate the distance relay effectively and we can examine the operation of the distance relay very closely including debugging by using EMTP MODELS.

계통연계형 마이크로그리드의 독립운전시 주파수 제어에 관한 연구 (Frequency Control Method of Grid Interconnected Microgrid Operating in Stand Alone Mode)

  • 채우규;이학주;박중성;조진태;원동준
    • 전기학회논문지
    • /
    • 제61권8호
    • /
    • pp.1099-1106
    • /
    • 2012
  • Microgrid is a new electrical energy system that composed of various generators, renewable energy, batteries and loads located near the electrical customers. When Microgrid is interconnected with large power system, Microgrid don't need to control the frequency. But in case of the outage or faults of power system, Microgrid should control the frequency to prevent the shutdown of Microgrid. This paper presents the frequency control methods using the droop function, being used by synchronous generators and EMS(Energy Management System). Using droop function, two battery systems could share the load based on locally measured signals without any communications between batteries. Also, we suggest that EMS should control the controllable distributed generators as P/Q control modes except batteries to overcome the weakness of droop function. Finally we suggest the two batteries systems to prolong the battery's life time considering the economical view. The validation of proposed methods is tested using PSCAD/EMTDC simulations and field test sites at the same time.

HVDC System 적용 Double-tuned 필터의 설계 방법 연구 (Double-tuned Filter Design For HVDC System)

  • 이희진;남태식;손금태;박정욱;정용호;이욱하;백승택;허견
    • 전기학회논문지
    • /
    • 제61권9호
    • /
    • pp.1232-1241
    • /
    • 2012
  • The ac side current of an high voltage direct current (HVDC) converter is characterized by highly non-sinusoidal waveform. If the harmonic current is allowed to flow in the connected ac system, it may cause unacceptable levels of distortion. Therefore, ac side filters are required as part of the total HVDC converter station, in order to reduce the harmonic distortion of the ac side current and voltage to acceptably low levels. The ac side filters are also employed to compensate network requested reactive power because HVDC converters also consume substantial reactive power. Among different types of filters, double-tuned filters have been widely utilized for HVDC system. This paper presents two design methods of double-tuned filter; equivalent method and parametric method. Using a parametric method, in particular the paper proposes a new design algorithm for a realistic system. Finally, the performance of the design algorithm is evaluated for a 80kV HVDC system in Jeju island with PSCAD/EMTDC program. The results cleary demonstrate the effectiveness of proposed design method in harmonics elimination and steady-state stability.