• Title/Summary/Keyword: PSC-I 거더교

Search Result 29, Processing Time 0.02 seconds

Experimental Study on Structural Behavior of Precast PSC Curved Girder Bridge (프리캐스트 PSC 곡선 거더교의 구조거동에 대한 실험적 연구)

  • Kim, Sung Jae;Kim, Sung Bae;Uhm, Ki Ha;Kim, Jang Ho Jay
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1731-1741
    • /
    • 2014
  • Recently, many overpasses, highway, and advanced transit systems have been constructed to distribute the traffic congestion, thus small size of curved bridges with small curvature such as ramp structures have been increasing. Many of early curved bridges had been constructed by using straight beams with curved slabs, but curved steel beams have replaced them due to the cost, aesthetic and the advantage in building the section form and manipulating the curvature of beams, thereby large portion of curved bridges were applied with steel box girders. However, steel box girder bridges needs comparatively high initial costs and continuous maintenance such as repainting, which is the one of the reason for increasing the cost. Moreover, I-type steel plate girder which is being studied by many researchers recently, seem to have problems in stability due to the low torsional stiffness, resulting from the section characteristics with thin plate used for web and open section forms. Therefore, in recent studies, researchers have proposed curved precast PSC girders with low cost and could secured safety which could replace the curved steel girder type bridges. Hence, this study developed a Smart Mold system to manufacture efficient curved precast PSC girders. And by using this mold system a 40 m 2-girder bridge was constructed for a static flexural test, to evaluate the safety and performance under ultimate load. At the manufacturing stage, each single girder showed problems in the stability due to the torsional moment, but after the girders were connected by cross beams and decks, the bridge successfully distributed the stress, thereby the stability was confirmed. The static loading test results show that the initial crack was observed at 1,400 kN when the design load was 450 kN, and the load at the allowable deflection by code was 1,800 kN, which shows that the safety and usability of the curved precast PSC bridge manufactured by Smart Mold system is secured.

Development of Prefabricated Voided-Slab Bridge Using PSC-I Girders (프리캐스트 I형 거더를 이용한 조립식 중공슬래브교 개발)

  • Kim, Hyun-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.742-752
    • /
    • 2017
  • The bridge type of steel concrete composite rahmen or pre-flex has been applied where a lower depth girder is required due to vertical clearance restrictions caused by the crossing of rivers and roads. On the other hand, because these types are not only complicated to manufacture and construct, but also expensive, void slab bridges may be an alternative. In this study, prefabricated PSC-I shape girder was used to make a void slab and all procedures for bridge development, such as analysis, design, fabrication, and real-scale test, were included in the scope of research. The results of this study will provide sufficient background data to be applied to the field and the structural safety has been verified through experiments.

Live Load Distribution in Prestressed Concrete I-Girder Bridges (I형 프리스트레스트 콘크리트 거더교의 활하중 분배)

  • Kim, Kwang-Yang;Kang, Dae-Hui;Lee, Hwan-Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.288-293
    • /
    • 2008
  • The standard prestressed concrete I-girder bridge (PSC I-girder bridge) is one of the most prevalent types for small and medium bridges in Korea. When determining the member forces in a section to assess the safety of girder in this type of bridge, the general practice is to use the simplified practical equations or the live load distribution factors proposed in design standards rather than the precise analysis through the finite element method or so. Meanwhile, the live load distribution factors currently used in Korean design practice are just a reflection of overseas research results or design standards without alterations. Therefore, it is necessary to develop an equation of the live load distribution factors fit for the design conditions of Korea, considering the standardized section of standard PSC I-girder bridges and the design strength of concrete. In this study, to develop an equation of the live load distribution factors, a parametric analysis and sensitivity analysis were carried out on the parameters such as width of bridge, span length, girder spacing, width of traffic lane, etc. Then, an equation of live load distribution factors was developed through the multiple linear regression analysis on the results of parametric analysis. When the actual practice engineers design a bridge with the equation of live load distribution factors developed here, they will determine the design of member forces ensuring the appropriate safety rate more easily. Moreover, in the preliminary design, this model is expected to save much time for the repetitive design to improve the structural efficiency of PSC I-girder bridges.

  • PDF

Comparison of Structural Analysis Models on PSC I-Girder Bridges (I형 PSC 거더교를 위한 구조해석 모델의 비교)

  • Lee Hwan-Woo;Kim Kwang-Yang;Han Sang-Jun;Ko Dong-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.725-732
    • /
    • 2006
  • This study has been started for the development of a refined live load distribution formula that has safety and precision toward I type prestressed concrete girder bridge. This type of bridge is mainly applied to short span bridges that are $25{\sim}40m$ in length. Based on various structure analysis models that are currently being applied as preceding studies for the development of live load distribution method. an analysis of flexural stiffness ratio for barrier and diaphragm has been performed. As the result of parametric analysis for the changes in flexural stiffness ratio, the effect of barrier on load distribution showed as insignificant in all structural analysis models while analyzing the deflection distribution. Also. the deflection distribution of the models with stiffness of 25% in which the diaphragm eccentricity is accounted for as same as the models with stiffness of 100% in which the diaphragm eccentricity is unaccounted for. This results are verified through the comparison with a experimental data.

  • PDF

Carbonation Assessment for Superstructure of Bridge Used in Urban Area for 46-Years by Core Specimens Extracted from the Structure (도심지에서 46년 사용된 교량 상부구조물에서 채취한 코어를 통한 탄산화 실태조사)

  • Kwon, Seung-Hee;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.151-157
    • /
    • 2019
  • Concrete bridge constructed in metropolitan cities has different superstructure members like slabs and girders, and their carbonation depths vary with different design strengths and local environmental conditions. In this paper, 54 concrete cores were obtained from prestressed concrete girders and the related tests were performed for compressive strength and carbonation depth measurement. Referred to the specified compressive strength of 24MPa for slab and 35MPa for I-type girder, the strengths from cores were evaluated to 82% and 73% of design grade, respectively. For carbonation depth, the slab member showed 30.6mm of average with 32.9% of COV(Coefficient of Variation) and I-type girder showed 16.7~17.0mm with 22.8~33.6 of COV. The I-type girder has much lower carbonation depth and COV compared to slab member, however it has higher COV than column structures.

Destructive Load Testing of Prestrissed Concrete Girder Bridge (PSC 거더교의 파괴실험)

  • Oh, Byung-Hwan;Kim Kwang-Soo;Lew, Young;You, Dong-Woo;Kim, Do-Kyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.470-475
    • /
    • 2000
  • This research covers the resting of precast/prestressed concrete I-Girder bridge. The research was designed to examine processes for improving the condition evaluation and rating of prestressed concrete bridge. To establish procedures that allow for the full utilization of prestressed concrete bridge capacity, a 28-year old sample was loaded to failure in site. The bridge was constructed with 12 spans, and girders of each span were simply supported. At each loading stage, the deflections, reinforcement strains, prestressing wire strains and concrete strains were examined. Failure behavior was analyzed, and failure load was also evaluated. The test results wee compared to the analytical results from the non-linear finite element analysis.

  • PDF

Spectra of Road Surface Roughness on Bridges of Minor Road (지방도 도로교 노면조도의 스펙트럼)

  • Chung, Tae Ju;Cha, Bong Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.757-767
    • /
    • 2016
  • The power spectral density (PSD) for the road surface roughness on the bridges of minor roads in Wonju city and Hoengseong-gun, Gangwon-do is presented. To obtain the PSD, the road surface roughness on 18 different bridges with various superstructure type and span is measured by GPS at every 10 to 30cm interval. Assuming the PSD as the stationary normal probability process with zero mean value, the PSD of measured road surface roughness is obtained by applying the Maximum Entropy Method (MEM). A simple formula in evaluating the PSD of RC slab bridge, Rahmen bridge and PSC I-girder bridge which is applicable to the dynamic response analysis of bridges considering the road surface roughness is proposed. Using the calculated PSD curves, the road surface conditions on the 18 bridges are evaluated. The statistical relationship between the PSD and the IRI is presented by applying linear regression and correlation analysis.

Development of the Approximate Cost Estimating Model for PSC Box Girder Bridge based on the Breakdown of Standard Work (대표공종 기반의 PSC Box 교량 상부공사 개략공사비 산정모델에 관한 연구)

  • Kim, Sang-Bum;Cho, Ji-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.791-800
    • /
    • 2013
  • Needs for developing a better way of cost estimating process for public construction projects have been widely recognized. Those needs are mainly from the early phases of the project through the construction life cycle due to the its importance to the control process. In contrast to the traditional estimating method based on unit-price references, this research utilized this following process. The first step is analyzing the real cost data from actual cost activities (2000~2010) about the statement of P.S.C(Prestressed Concrete) Box Girder Bridge. The collected data was broken into four categories based on technical construction methods such as I.L.M(Incremental Launching Method), M.S.S(Movable Scaffolding System), F.S.M(Full Staging Method), and F.C.M(Free Cantilever Method). The second, actual design documents including the actual cost estimating documents, drawings and specifications were carefully reviewed to cluster the cost itemized statement from four categories. It was also attempted to seek the proper breakdown of standard works that are responsible for more than 95 percentage in each categories in terms of its cost. The third, this research comes up the index for standard unit materials and unit price of standard work and develops the approximate estimating model applying for the specification(length and breadth of bridges) per square area that the user takes as well as suggests the practical application plan within the original time alloted.

Development of an Activity-Based Conceptual Cost Estimating Model for P.S.CBox Girder Bridge (대표공종 기반의 P.S.C 박스 거더교 개략공사비 산정모델 개발 -상부공사 중심으로-)

  • Cho, Ji-Hoon;Kim, Sang-Bum
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.197-201
    • /
    • 2008
  • Conceptual cost estimates for domestic highway projects have generally been conducted using governmental unit-price references. Inaccuracies in governmental unit-price data has repeatedly addressed in the Korean construction industry which often lead to poor decision making and cost management practices. Thus, needs for developing a better way of conceptual cost estimating has been widely recognized. This research is considered as the first step in developing such model using real-world cost data based on actual construction activities. The data analyzed in this paper includes 41 P.S.C (Prestressed Concrete) Box bridges which broke into 4 categories based on construction methods such as I.L.M(Incremental Launching Method), M.S.S(Movable Scaffolding System), F.S.M(Full Staging Method), and F.C.M(Free Cantilever Method). Actual design documents; including actual cost estimating documents, drawings and specifications were carefully reviewed to effectively break down cost structures for PSC girder bridges. Among more than 40 cost categories for each P.S.C girder bridge type, 7 of them were identified which accounted for more than 95% of total construction cost (ILM: 99.47%, MSS: 99.22%, FSM: 98.18%, and FCM: 98.12%). In order to validate the clustering of cost categories, the variation of each cost category has been investigated which resulted in between -1.16 % and 0.59%.

  • PDF