• Title/Summary/Keyword: PSC I girder

Search Result 78, Processing Time 0.022 seconds

Experimental Performance Estimate of a 40m PSC I Girder for Railway Bridges (40m PSC I형 철도교의 동적 성능 평가)

  • Yeo, Inho
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.5
    • /
    • pp.394-401
    • /
    • 2013
  • Here we report the results of an experimental laboratory test to verify the applicability to railway bridges of a PSC I girder of which the upper flange thickness was increased to improve sectional performance. The thicker this flange is, the further upward the neutral axis is moved. If in this way the span length can be increased to 40m long, the bridge may be constructed with four girders instead of five. Therefore, construction cost could be lowered by reducing the weight of the long span structure due to increased sectional efficiency. It was also necessary to be certain that the dynamic performance of this relatively flexible structure would be applicable to railway bridges. Therefore numerical analysis, as well as static and dynamic tests, was carried out for a full-size PSC I girder. Based on these results, it was verified that the performance of the PSC I railway bridge satisfied the performance criteria of the design code.

Assessment for Extending Span Ranges of PSC Girder Bridges : I. Proposed Strategy to Estimate the Spans (PSC 거더교의 장경간화 평가 기법 : I. 경간 평가 기법의 제안)

  • Jeon, Se Jin;Choi, Myoung Sung;Kim, Young Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3A
    • /
    • pp.235-241
    • /
    • 2009
  • PSC girder bridge is known to be more economical than other types of bridges and has been usually applied to a span range of 25 m to 35 m according to the standard shapes for highway bridges in Korea. The spans of the recently developed new types of PSC girders are also limited to 50 m at most. In this study, therefore, feasibility of the long-span PSC girder that reaches more than 50 m is investigated by applying several strategies from the perspectives of materials, design and construction. A systematic procedure is proposed that can be used to assess the effect of each strategy on the span. The proposed scheme adopts a graphical approach that represents a relationship between the number of prestressing tendons and the span, and is derived on a basis of safety assessment equations of the girder in each stage of fabrication and in service. In the companion paper, the amount of span extension is quantitatively evaluated by applying the proposed scheme into a sample PSC girder bridge.

A Case Study on Continuous Prestressed Concrete Composite Girder with Cross-beam Anchorage System (가로보를 정착구조로 하는 연속화 PSC 합성거더 시공사례)

  • Park, Hyun-Myo;Huh, Young;Kim, Yun-Hwan;Kim, Seok-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.451-452
    • /
    • 2010
  • Prestressed concrete I girder bridge has been one of the most widely used bridges in the world because of its excellent construction feasibility, economic efficiency, serviceability, and safety. But in Korea, the PSC bridge has not been utilized for long span because of high girder height in its standard design. Thus, the results confirm that it is possible to applicate the continuous PSC girder with end cross beam anchorage system using multi-stage prestressing technique.

  • PDF

Prediction of Crack Distribution for the Deck and Girder of Single-Span and Multi-Span PSC-I Bridges (단경간 및 다경간 PSC-I 교량의 바닥판 및 거더의 균열분포 예측)

  • Hyun-Jin Jung;Hyojoon An;Jaehwan Kim;Kitae Park;Jong-Han Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.102-110
    • /
    • 2023
  • PSC-I girder bridges constitute the largest proportion among highway bridges in Korea. According to the precision safety diagnosis data for the past 10 years, approximately 41.3% of the PSC-I bridges have been graded as C. Furthermore, with the increase in the aging of bridges, preemptive management is becoming more important. Damage and deterioration to the deck and girder with a long replacement cylce can have considerable impacts on the service and deterioration of a bridge. In addition, the high rate of device damages, including expansion joints and bearings, necessitates an investigation into the influence of the device damage in the structural members of the bridge. Therefore, this study defined representative PSC-I girder bridges with single and multiple spans to evaluate heterogeneous damages that incorporate the damage of the bridge member and device with the deterioration of the deck. The heterogeneous damages increased a crack area ratio compared to the individual single damage. For the single-span bridge, the occurrence of bearing damage leads to the spread of crack distribution in the girder, and in the case of multi-span bridges, expansion joint damage leads to the spread of crack distribution in the deck. The research underscores that bridge devices, when damaged, can cause subsequent secondary damage due to improper repair and replacement, which emphasizes the need for continuous observation and responsive action to the damages of the main devices.

Study on the Evaluation Method of Load Carrying Capacity Based on Nonlinear FEM Analysis for PSC I Typed Girder Bridge (비선형 FEM 해석에 기초한 PSC I 거더교량의 내하력 평가기법에 관한 연구)

  • Sim, Jongsung;Kim, Gyu-Seon;Moon, Do-Young;Ju, Minkwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.81-88
    • /
    • 2008
  • The purpose of this study is to improve and modify the evaluation method of load carrying capacity for simply supported PSC I Typed girder bridge. To do this, conventional ASD(Allowable Stress Design) and USD(Ultimate Strength Design) evaluation method were initially investigated and it was evaluated that the conventional USD evaluation method may perform the load carrying capacity as conservative because it do not consider the prestressing upper-force effect of simply supported PSC I Typed girder bridge. To reasonably evaluate the load carrying capacity, the upper-force effect should be considered to the PSC I Typed girder bridge. Thus, in this study, the MUSD method was Suggested and compared to the nonlinear FEM based-load carrying capacity using the live load factor and the efficiency of the evaluation method of load carrying capacity was investigated by experimental and analytical result. In the result of this study, the suggested MUSD evaluation method showed a reasonable evaluating result for the simply supported PSC bridge. For the new technique of load carrying capacity based on the nonlinear FEM analysis, it could effectively simulate the load-deflection relationship and the load carrying capacity of the PSC I Typed girder bridge.

Modified HAZUS Method for Seismic Fragility Assessment of Domestic PSC-I Girder Bridges (PSC-I 거더교의 지진취약도 평가를 위한 HAZUS 방법의 국내 적용성 연구)

  • Seo, Hyeong-Yeol;Yi, Jin-Hak;Kim, Doo-Kie;Song, Jong-Keol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.161-170
    • /
    • 2010
  • To reduce the amount of seismic damage, several design codes are being improved considering the earthquake resistant systems, and many researches are being conducted to develop the earthquake damage evaluation techniques. This study develops the Korean seismic fragility function using the modified HAZUS method applicable to PSC-I girder bridges in Korea. The major coefficients are modified considering the difference between the seismic design levels of America and Korea. Seismic fragility function of the PSC-I girder bridge (one of the standard bridge types in Korea) is evaluated using two methods: numerical analysis and modified HAZUS method. The main coefficients are obtained about 70% of the proposed values in HAZUS. It is found that the seismic fragility function obtained using the modified HAZUS method closes to the fragility function obtained by conventional numerical analysis method.

Development of Long Span Spliced PSC Girder Bridges (장경간 Spliced PSC 거더교량의 개발)

  • 심종성;한만엽;오흥섭;김정구;김민수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.680-685
    • /
    • 1998
  • Prestressed concrete I-girders were used in the bridge applications in the early 1950s. During the last four decades, the most widely used girder length of bridges have been below 30meters. The main objective of this study is to develope the alternative section for long span bridge which exceed 40 meters. The developed Bulb-Tee girder has a wide bottom flange to enhance the compressive strength and to allow placement of a large number of strands in the bottom flange. New bulb-tee shaped PSC girder sections are proposed in this paper. Splicing the technique for long span bridge girder to reduce the self weight is also proposed.

  • PDF

Flexural Behavior of Precast PSC Segmental I Girder (Precast PSC-Segmental I형 거더의 휨거동에 관한 연구)

  • Hong, Sung Nam;Kim, Kwang Soo;Park, Sun Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.421-428
    • /
    • 2006
  • This study was performed by using experiment to minimize behavior difference of Monolithic and segmental Girder and to prove the design concept of the PSI (Precast PSC-Segmental I Grider). A full scale girder test was performed in four different cases, the monolithic girder, the segmental girder type-1, the segmental girder type-2 and the segmental girder type-3. The monolithic girder that was produced in one body 25 m span and the segmental girder that was jointed 5-sliced 5 m segment. The girder was built by as one body prestressing the tendons after manufacturing the segmental girder, and second prestressing after the casting of the slab concrete. The test result shows that the measured values were almost same or slightly bigger than the theoretical values which means that the PSI girder bridges concept came out to be reliable.

Reinforcement Effects using V Type External Strands on PSC I Girder Bridges (V자형 배치 외부강선을 이용한 PSC I거더교의 보강 효과)

  • Back, Seung-Chul;Song, Jae-Ho;Kim, Haeng-Bae;Kim, Suk-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.49-57
    • /
    • 2016
  • This study intended to analyze reinforcement effects of PSC I girder bridges to which prestresses are introduced using V type of external strands. So that series of bridge loading tests are carried out on existing PSC I girder bridge for the cases of before-reinforcement and reinforcement. The measured results from tests being analyzed and compared with the ones from MIDAS structural analyzing program, the reinforcing effects of the reinforcement system adopted in this study were investigated. It is found out that when the V type systems are applied to the bridge girders, the slope of load distribution factor curves become lower improving soundness of bridge upper structure. And also it is confirmed that the reinforcement system in this study can be taken as helpful for improvement of both flexural and shear ability of PSC I girder bridges, as well as dynamic behavior. Furthermore it is found when the elastic pads are applied to the system, dynamic reinforcing effects are maximized.

Dynamic Response of PSC I shape girder being used wide upper flange in Railway Bridge (확장된 상부플랜지 PSC I형 거더교의 동특성 및 동적안정성 분석)

  • Park, Jong-Kwon;Jang, Pan-Ki;Cha, Tae-Gweon;Kim, Chan-Woo;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.125-135
    • /
    • 2015
  • The tendency of more longer span length being required economical in railway bridges is studying about PSC I shaped girder. In this case, it is important to analyze and choose the effective girder section for stiffness of bridge. This study investigates the dynamic properties and safety of PSC I shaped girder being used wide upper flange whose selection based on radii and efficiency factor of flexure for railway bridge in different span type. In addition, 40m PSC Box girder bridge adopted in Honam high speed railway is further analyzed to compare dynamic performance of PSC I shaped girder railway bridge with same span length. Time history response is acquired based on the mode superposition method. Static analysis is also analyzed using standard train load combined with the impact factor. Consequently, the result met limit values in every case including vertical displacement, acceleration and distort.